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 Introduction 
This exercise is focusing on feature clustering, which in this case is a method to use PCA 
(principal component analysis) to recognize and handle the characteristics of patterns and 
textures in an image.  

 

Thoery: 
If we generate a set of Gabor-filters and convolve each of these filters with a copy of an 
image, then the convolved images will hold different responses for each filter. If the 
source image contains different areas of textures, then each of these areas will most likely 
have different responses to each of the different Gabor filters. The characteristics of a 
pattern or a texture in the image could therefore be described by the way that each Gabor 
filter interacts with it. If we could identify a set of parameters that describe how the filters 
affect each texture, then we should be able to use this to identify the areas in the image 
where the different textures are.  

 

In this exercise we use the eigenvectors from a correlation matrix for the filtered images, 
to identify the set of characteristics for each texture. By selecting only the most 
significant eigenvectors, we reduce the amount of data that needs to be processed.   

 



Part 1: Feature extraction 

 

• what happens to the shape of the filters as you increase the frequency? (look 
both at the frequency and at the image domains) 

In the image domain, an increase in frequency will generate a more defined horizontal or 
vertical line through the spectrum. In the frequency domain, an increase of the frequency 
results in a slightly less defined pulse that is shifted in position.  

 

• what is the relation between the real and imaginary part of a filter? 
The real and imaginary parts of the filter make up the components of the complex values 
that the frequency spectrum contains.  

 

• what happens when the orientation is changed?  
If the orientation is changed, then the frequency response in the frequency spectrum is 
rotated around the center of the spectrum. In the image domain, this is visualized by the 
filter being rotated. 
 
 

Image1:  created with function makesinusoid(64,10,-10,128) 



The Gabor decomposition can be used to obtain an invariant (constant) response to 
sinusoidal waves. Makesinusoid.m generates  a sinusoidal wave with a rotated region in 
the middle. Try displaying one image (look at the comments). 
Complete the code in invariance.m. This script will display the Gabor decomposition 
(have a look at decomposition.m) of the sinusoidal images considered.You have to code 
the line that forces the invariant response to sinusoids. 
 
The left image below is created without having applied the “fix” to the file invariance.m, 
we can se how the filter passes through a sinus signal without modification, which is 
probably because the signal is a perfect match with the filter. This effect occurs because 
we only represent the real part of the result from our calculation.  
 
After changing the line gabor=real(gabor) to gabor=abs(gabor), in the file 
invariance.m, we end up with the image to the right. Here we can now see that the real 
result from the filter operation generated a solid, more continuous response, to where the 
filter matched a signal in the image. 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Image 2:      Image 3: 
 
 
 
 
 
Conclusion:  
The real part of the Gabor decomposition is NOT invariant. However, the absolute value 
of the Gabor decomposition is, and could be used to represent the area where the filter 
matches a signal.  



Part 2: Clustering applied to Texture Segmentation 
 
… 
 
Do the same completion (invariant response to sinusoids) on texture3.m. Now go to pca3.m and complete 
the missing lines - refer to the theory, take your time and try to understand what is going on with pen and 
paper.  

At first we add the same line as we added in the file invariance.m to the file texture3.m to 
get an invariant response when applying the filters.  
 
gabor=abs(gabor); 
 
In the file pca3.m we then add the following code: 
 
f = corr(matrix_F')'; 
 
The function corr() extracts the correlation matrix. In our current code we do this instead 
of subtracting the mean, and multiplying the matrix by its transpose and a scalar. 
 
We use the function eigs() to get the most significant eigenvectors/principal components 
and store their values to the principal_componetns matrix. The function eigs() returns a 
sorted matrix into principal_components, containing nprcomps rows with the most 
significant values.  
 
[principal_components, pv]=eigs(f, nprcomps);     
 
We then calculate the final result by multiplying the principal components by the 
matrix_F. The result is a matrix of size 256*256*nprcomps, which will be further 
processed. 

 

 

 



Clustering 
 
The Statistics Toolbox in Matlab implements functions pdist, linkage and cluster to perform clustering. 
Read the documentation for these functions. 

Show with a simple computation that it is unfeasible to apply the clustering algorithm to all the feature 
vectors in our image directly. 

 

The number of feature vectors in our entire image is equal to the number of pixels. The 
first step in our algorithm is to calculate the distance between every vector. Since this 
includes checking every vector with every other vector, the number of operations can be 
described by the formula for sn. If we use all of our vectors in this step, the number of 
calculations will be too large to perform with an ordinary computer in a reasonable 
amount of time.  
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nnnnks , n=256*256 sn= 2.1475*109 calculations.   

 

What we do instead, is that we pick a number of randomly selected vectors from our 
feature vectors and perform the calculation on these.  
 
Script clustering3.m guides you through these steps. Start by selecting a random subsample of 500 feature 
vectors. These are clustered by calling functions pdist, linkage and cluster. Select 'Euclidean' distance for 
pdist and 'average' distance for linkage. You can now visualize the cluster tree using function 
"dendrogram". Can you identify the depth at which there are exactly 7 clusters (which is the number of 
different regions in the image)? 

 
%... 
 
m=pdist(sample','euclidean'); 
 
%... 
 
cluster_tree=linkage(m, 'average'); 
 
%... 



Next, compute the average vector (the centroid) of each cluster. Scan all the feature vectors (= all the image 
pixels); for each vector, find the closest cluster centroid and assign the pixel to that region. Display the 
resulting segmented image. 
 
average=zeros(nprcomps, nregions); 
  
for cl=1:nregions 
    indexes = find(clusters==cl); 
    dim=size(indexes); 
    avg = zeros(nprcomps, 1); 
    for i=1:dim(1) 
        avg = avg + sample(:, indexes(i)); 
    end 
    if (dim(1) > 0) 
        avg=avg./dim(1); 
    end 
    average(:, cl)=avg; 
end 
 
 
Once we have the average for each cluster, we compute its distance to the feature vector 
for each pixel in the image. The cluster with the smallest distance to a pixels feature 
vector, is the cluster that we assign the pixel to. With each cluster given a different color, 
we can see the result of the texture recognition in image 5.   
 
 
 
 
 

Image 4        Image 5 


