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Neural Network Approach to Modelling Parameters Variation in the 

Frequency Domain 

 

Andrzej Rusiecki, Bucharest, January 2007 

 

Abstract: In this report some remarks considering modelling parameters variation with 

artificial neural networks (NN) trained on Chamy software-based data are presented. The 

dedicated network structure is proposed, discussed and tested in a few cases. 

 

1. Introduction 

The current version of the Chamy3d software is able to produce frequency 

characteristics of the analyzed device for the assumed set of parameters. Potentially, it can 

compute the device behaviour for the given conditions. In this report we propose to use a 

sample of the data, generated by the Chamy tool, to build a neural network model that can 

automatically allow obtaining device responses for the other sets of parameters.  The 

advantages of such approach are: shorter computation time (in the case of the trained network, 

the response is given immediately after signal is propagated through the structure) and simple 

use (neural networks work as a “black-box” modelling tool). 

The use of artificial neural networks in modelling different properties of electronic 

devices is not a new idea. NN were used in the various fields from simple prediction of device 

characteristics [4], automatic building RF/microwave models [5], [7], to constructing models 

based on time-domain large signals measurements [6]. Also modelling of the statistical 

behaviour for the parameters variation can be found in literature [8]. 

In this report we focus on modelling parameters variation, which from the NN point of 

view, may be considered as a problem of modelling a family of functions. To build such 

models we can, in fact, disregard the source of our data and focus on the techniques leading to 

the proper network behaviour. 

 

2. Problem definition 

The data generated by the Chamy tool are: real and imaginary part of Z for the given 

frequency and assumed set of parameters.  For simplicity (and because the software is not yet 

able to produce more data automatically) we examine the case of 2 parameters variation. 



 

The problem may be then defined as follows: the set of training samples is given. 

Every sample contains 3-dimensional argument vector (2 device parameters and frequency) 

and two-dimensional output vector. We can divide the training set into the subsets 

corresponding to the each parameters case (2 parameters fixed). Moreover, it is not difficult to 

notice that such subsets can be also considered as generated by the separate functions. Now, if 

we take separately also two elements of the output vector, we get subsets of points, each 

generated by a certain function F:R→R. These subsets constitute characteristics, examples of 

which are shown in the figures 5 and 6. 

The simplest approach in NN modelling is to choose network architecture, then, fitting 

size of inputs and outputs to the training data, try to learn the structure. However, it obviously 

suffers from many difficulties, such as unknown type of correlation the network can build 

between the data fitting exactly to the training set (e.g. so-called overfitting phenomenon), 

potentially huge size of such network, and long computation time. This is why a dedicated 

approach to every case should be proposed. 

For the considered task, to make the network size as small and effective as possible, we 

propose to decompose the main problem into the set of smaller problems. The idea is based on 

the fact that our task can be described as approximation of the family of functions. The 

functions from the family have similar shape in the sense that they differ only in parameters 

(in this case no more than 2). Obviously, the analytical formula of the functions is unknown. 

 

3. Dedicated network structure 

As it is shown in the Fig.1 we decompose our task into parametric and nonparametric 

problem. Term ‘nonparametric’ means here that we gather knowledge of the general shape of 

functions that can be then parameterized to obtain solutions for the given data (in the regular 

meaning the NN learning problem is clearly parametric). The nonparametric estimation 

should be ideally done by the network Net2, which is to approximate the representative 

function from the family (real or imaginary part of Z) for the assumed and preset parameters. 

Then its output should be combined with the parameters inputs pre-processed by the Net1, 

and fed to the output block. The output junction is responsible for solving parametric problem 

and calculating function values for the given parameters. The question is what should be the 

outputs of networks Net1 and Net2, and how to construct the last block. 



 

 

Figure 1: Decomposed problem – general view 

 

One approach could be using a product or summation as the output junction. Such 

structure for the reference parameters r, p and imaginary part of Imag(Z) = Zi as the goal, is 

shown in the Fig. 2. Then, automatically, the output of the Net2 is the approximated output 

for the set parameters yNet2=Zi,rp and the Net1 output is simply scaled yNet1=Zi(r,p,f)/ Zi,rp(f) (in 

the case of the product).  Disadvantages of this approach are, however, clearly evident. First 

of all, it is not certain that the dependency yNet1(r,p,f) is simpler than just Zi(r,p,f) (though, it is 

so in the case of the tested device, especially if we consider imaginary part of Z). The second 

reason is that the error of both networks is multiplied here, which might result with very high 

level of inaccuracy. 

This is why another, more general and easy to implement, new approach is introduced. 

Because we have training data with targets, the “learning with a teacher” strategy should be 

used. This induces the use of supervised feedforward or recurrent neural networks. With the 

problem of function approximation feedforward sigmoid [1] and radial basis function (RBF) 

networks deal in the best way because they can be considered as universal approximators [2]. 

However, the RBF networks [3] interpolate rather than approximate training data (even when 

achieving higher accuracy than sigmoid networks) which makes the sigmoid transfer function 

networks the best choice here. 
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Figure 2: Example of dedicated approach with ‘product’ block 

 

As it was mentioned before, we intend to create the network structure that could be 

relatively small and effective. To make it so, we follow the idea of decomposition of the 

problem. The proposed network structure is shown in the Fig. 3. As it can be noticed, the clue 

is to use: 

i) a small network to approximate the Zi,rp in the f domain for the fixed parameters; 

ii) a bigger two-layer network with parameters connected to the inputs and Zi,rp fed to 

the second hidden layer. 

In this structure, similarly to what was proposed in the Fig.1, we decompose our problem and 

the second layer of the main network combines the information of the function shape with the 

parametric model. Instead of the Net2 also another approximation technique could be applied. 

 

Figure 3: Dedicated NN structure 
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4. Case study 

Because obtaining data from the current version of the Chamy tool needs many 

manual operations, we examined here  only one example coming from the benchmark set 

device and one constructed artificially as a group of characteristics. 

The first testing example is L-Shaped Interconnect Element (L-dev) [10]. The layout 

of the L-Shape device is shown in Fig. 4 and the geometrical parameters with materials data 

in the tables 1-3 (after [10]). In figures 5 and 6 exemplary data for the different values of 

parameters are presented. The device has two electrical terminals: one current excited (zmax 

face) and a ground terminal (xmax face). The computational domain was divided into 768 

nodes. 

In this example to train and test the NN we generated Z values in 20 frequencies for 49 

sets of parameters. The varying parameters were p2 and r2. 

In the second example artificially data were generated according to the function: 

p

rx
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)(

−

= , 

where r and p are parameters, x is independent and y dependent variable. Just as in the 

previous case, y values were calculated for the different sets of parameters. This example 

represent situation when the dependence between parameters and function shape is not as 

trivial as in the case of the L-Shaped Device. Exemplary characteristics are shown in Fig. 7. 

 

5. Simulation results 

The comparison of the performance of regular networks and our dedicated networks 

tested on the aforementioned examples is gathered in the tables 4 and 5.  The first table 

contains the mean MSE (mean squared error) for one hundred networks trained on different 

permutations of data sets. In the second table the median MSE values are shown. The data 

were divided into the training and testing set in the relation 1:3. The NN were trained on the 

data belonging to the training sets and tested on the rest of the data. The networks responses 

for the testing data not used in the training process are presented in figures 8-10. Both tested 

structures were based on the two-layer sigmoid transfer function feedforward network 

architecture. The numbers of the neurons in both hidden layers were set to n=m=5. To train 

the NN a conjugated gradient algorithm in the Polak-Ribierre variant [9], with 550 epochs 

was applied. 
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Figure 4: L – Shape Device 

 

 Looking at the tables 4 and 5 one can notice that the lowest error level was achieved in 

each case for the new dedicated NN structure. The error for the regular network was up to 

300% higher. Closer look in the figures reveals however, that even for the dedicated network, 

its output differs slightly from the desired values. Obviously, for the training data the network 

achieves almost exact fitting. It clearly demonstrates that the dedicated network simulates test 

examples successively. 

 

6. Summary 

 In this report a simple NN-based approach to model sets of similar functions was 

presented. The approach can be used also for modeling parameters variations of 

nanoelectronic devices. As it was demonstrated on the testing data generated by the Chamy 

tool, the new dedicated network presents better performance when compared with the typical 



 

NN structure. Future research could be focused on searching for the NN structures for 

modeling devices characteristics in the multidimensional parameters space. 

 

 

Tabel 1: Layers descrition 

Layer Parameters Nominal [µm] Min [µm] Max [µm] Material 

Xmax 15 9 725  
Domain 

Zmax 15 9 725  

Si h1 125 0 725 Si 

SiO2 h2 21.131 20.074 22.187 SiO2 

Air h3 125 0 725 AIR 

 

Tabel 2: Bricks description 

Nr. 

Trick 
Layer Parameters Symbolic 

Nominal 

[µm] 

Min 

[µm] 

Max 

[µm] 
Material 

a a 6 3 361 

p1 p1 1.572 1.404 1.74 

p2 p2 3 2.85 3.15 
1 SiO2 

p3 p3 0.665 0.565 0.765 

ALUM 

b b 6 3 361 
2 SiO2 

r2 r2 3 2.85 3.15 
ALUM 

 

Tabel 3: Material properties 

Properties 
Material Name Type 

µ ε σ 

1 Si Semiconductor 1 11.9 10000 

2 SiO2 Insulator 1 3.9 1e-07 

3 ALUM Conductor 1 1 6.6e+07 

4 AIR Insulator 1 1 1e-07 

 



 

 

Figure 5: Testing example 1 – real part of Z 

 

 

Figure 6: Testing example 1 – imaginary part of Z 
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Figure 7: Testing example 2 – function shape for different parameters set 
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Figure 8: Test example 1, Imag{Z}, real values (blue) and dedicated NN responses (red) 



 

 

 

Tabel 4: Mean MSE for the testing data 

Network 

type 
Real{Z} Imag{Z} Example 2 

Dedicated 0.00648 0.01887 0.00063 

Regular 0.01600 0.06393 0.00105 
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Figure 9: Test example 1, Re{Z}, real values (blue) and dedicated NN responses (red) 
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Figure 10: Test example 2, real values (blue) and dedicated NN responses (red) 

 

 

 

Tabel 5: Median MSE for the testing data 

Network 

type 
Real{Z} Imag{Z} Example 2 

Dedicated 0.00379 0.00800 0.00062 

Regular 0.01073 0.02016 0.00104 
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