
Universitatea "Politehnica" din Bucureşti
Facultatea de Inginerie Electrica –CIEAC-LMN

Marie Curie Doctoral School in EE and CS
Spl. Independenţei 313, RO-060042, Bucureşti ROMANIA

http://www.lmn.pub.ro/ Tel/Fax: (40 21) 311 8004, (40 21) 316 95 71,
e-mail: lmn@lmn.pub.ro

REPORT TITLE: Working with Unicore 6.x

AUTHOR NAME: Tauseef Jamal

CONTENTS

1: What is UNICORE in General:
1.1 UNICORE
1.2 Grid Layout
1.3 Server Components
1.4 Clients Components
1.5 UNICORE for testing purpose:

2: Server Components
2.1 Installation
2.2 Additional configuration
2.3 Start server components

3: Clients components Installation
3.1 GPE Application Client
3.2 Installation
3.3 PovRay GridBean
3.4 Script GridBean
3.5 Script GridBean & Output Files

1. What is UNICORE in General:

1.1 UNICORE
UNICORE (Uniform Interface to Computing Resources) offers a ready-to-run
Grid system including client and server software. UNICORE makes distributed
computing and data resources available in a seamless and secure way through
intranets and internet.

UNICORE Quickstart package contains a complete UNICORE server installation,
including demo certificates and an easy to use graphical installer. I can use the
installation as a basis for easily creating your customized installations.

In order to run the UNICORE 6 server or client components, all we need Sun's
Java Runtime Environment (JRE) 1.5 or higher. Since all components are
platform independent, they can run under Linux, MAC and windows likewise.

UNICORE is a Grid Middleware, it submits jobs to already installed resource
management systems/batch systems. It means that UNICORE can run without a
resource management system/batch system, jobs are only forked then. But in
production one normally wants a resource management system/batch system.

Each server component (Gateway, Registry, UNICORE/X and XUUDB) needs
one X.509 private/public key pair signed by a CA (Certification Authority) as
identity. Each user needs a signed X.509 private/public key pair which has to be
loaded in the keystore of the client. Additionally, we need the certificates of the
CAs. For testing purposes, we can use the same private/public key pair for the
user and all the server components.

All network connections between the UNICORE components use
client-authenticated SSL (Secure Sockets Layer), i.e. both sides of the connection
check that they trust the other side. "Trust" means that the CA is checked.
If you use a single CA for all your certificates, the configuration is rather simple:
Each server component needs to know the CA certificate, and additionally the CA
has to be loaded in the client's keystore. If you use multiple CA's, consider how
the UNICORE components work together: The client communicates with the
Gateway, so the Gateway has to know the user's CA and the client has to know the
CA of the Gateway. The Gateway also communicates with the Registry and
UNICORE/X, so the Registry and UNICORE/X should know the Gateway's CA
and vice versa. Additionally, the UNICORE/X communicates with the XUUDB,
so both components need to know each other's CA certificates.

http://sourceforge.net/project/showfiles.php?group_id=102081&package_id=198640

When adding a new user to theX UUDB, we need his signed certificate (public
key). If we run the XUUDB in DN mode, the distinguished name (DN) of the
user's public key will suffice.

we can generate a certificate request within the GPE client:
Click Settings -> Keystore Editor
to open up the keystore editor and select
Actions -> Generate Certification Request
The client will create a new private key, which is automatically stored in the
keystore editor, and a certification request, which you are asked to save to disk.
Send the certification request to a CA (Certification Authority).
You will get a signed certificate (public key) and a CA certificate in return. Store
them on disk and click
Action -> Import
to import them into the keystore.

1.2 Grid Layout
Only the Gateway needs to be accessible from outside the firewall, using one port.
The other components need not be accessible outside the firewall. It is possible to
bypass the gateway for filetransfers, which will boost performance by a factor of
2, but will need a second open port to allow clients direct connections to the
UNICORE/X server.

We can install UNICORE 6 on a single machine. However, it is recommended to
use a dedicated machine for the gateway.

The best recommend way is three machines. One hosts the Gateway, one the
UNICORE/X server and XUUDB. A third one runs the TSI, usually this will be
the login node of our cluster.

If we use static initialisation, enter all VSites in the connections.properties file of
the gateway
The XUUDB is accessed using web service calls, and is configured in the
UNICORE server's main configuration file .If we run a batch system like Torque
on our nodes. The VSite acts as "front end", so you can access your little cluster
through UNICORE.

It's important to understand that UNICORE does not replace a local batch system.
The Gateway and UNICORE/X should run as normal user. The TSI MUST run as
root since it does setuid to the actual user, executes commands, calls the batch
system, writes files, etc.

http://www.unicore.eu/documentation/manuals/unicore6/unicorex/configuration.html

1.3 Server Components
Since Windows comes without hardly any applications that you can use for job
submit, install for example Perl or Python. Then change the IDB (by default
unicorex/conf/simpleidb) to recognise that application, here is an example for
Python 2.4:

<idb:IDBApplication>
 <idb:ApplicationName>Python Script</idb:ApplicationName>
 <idb:ApplicationVersion>2.4.3</idb:ApplicationVersion>
 < j s d l : P O S I X A p p l i c a t i o n
xmlns:jsdl="http://schemas.ggf.org/jsdl/2005/11/jsdl-posix">
 <jsdl:Executable>C:\Python24\python.exe</jsdl:Executable>
 <jsdl:Argument>-d$DEBUG?</jsdl:Argument>
 <jsdl:Argument>-v$VERBOSE?</jsdl:Argument>
 <jsdl:Argument>$ARGUMENTS?</jsdl:Argument>
 <jsdl:Argument>$SOURCE?</jsdl:Argument>
 </jsdl:POSIXApplication>
</idb:IDBApplication>

It is necessary on windows that we start the server components as administrator.
Since Windows comes without hardly any applications that you can use for job
submit, install for example Perl or Python. Then change the IDB (by default
unicorex/conf/simpleidb) to recognise that application, here is an example for
Python 2.4:

<idb:IDBApplication>
 <idb:ApplicationName>Python Script</idb:ApplicationName>
 <idb:ApplicationVersion>2.4.3</idb:ApplicationVersion>
 < j s d l : P O S I X A p p l i c a t i o n
xmlns:jsdl="http://schemas.ggf.org/jsdl/2005/11/jsdl-posix">
 <jsdl:Executable>C:\Python24\python.exe</jsdl:Executable>
 <jsdl:Argument>-d$DEBUG?</jsdl:Argument>
 <jsdl:Argument>-v$VERBOSE?</jsdl:Argument>
 <jsdl:Argument>$ARGUMENTS?</jsdl:Argument>
 <jsdl:Argument>$SOURCE?</jsdl:Argument>
 </jsdl:POSIXApplication>
</idb:IDBApplication>

It is necessary on windows that you start the server components as administrator.

1.4 Clients Components
UNICORE shows the following job states of the client:

STAGINGIN - the server is staging in data from remote sites into the job
directory

READY - job is ready to be started

QUEUED - job is waiting in the batch queue

RUNNING - job is running

STAGINGOUT - execution has finished, and the server is staging out data
to remote sites

SUCCESSFUL - all finished, no errors occured

FAILED - errors occured in the execution and/or data staging phases

UNDEFINED - this state formally exists, but is not seen on clients

If we want to install UCC on windows, ucc doesn't like if it's installed in a path
that does contain any spaces.
The config-directory must be created here: C:\Documents and
Settings\<username>\.ucc. The explorer may refuse to create a directory that starts
with a dot, in that case you can use mkdir from the command line.

5 UNICORE for testing purpose:

If you want to use UNICORE for testing purposes, there are three simple ways:
Install the UNICORE server quickstart bundle plus the clients on your local
machine. You need Sun Java 1.5. Although the UNICORE server components run
under Windows, a Linux-like operation system is preferred since this document
relays on applications like Bash.

Use the UNICORE testgrid and install precon_gured clients, You need Sun Java
1.5. You can download a pre-con_gured client package from
www.unicore.eu/testgrid.

Use the UNICORE LiveCD, You need a i386-compatible computer that boots
from CD. You can download the iso-image from
www.unicore.eu/download/unicore6.

2. Server Components

2.1 Installation
Download the server bundle from www.unicore.eu/download and execute the installer by
double-clicking on the jar-_le or entering in the command line:

java -jar unicore - quickstart -6.0.0. jar

Check the installation directory and ports used. You should not have any services already
using these ports, however, on most machines the default ports should be free. If you are
sure about the installation directory and ports, finish the installation.

2.2 Additional configuration
If the user submits a job with a specific application (e.g. a PovRay job or Bash script job),
the server has to know where it can _nd the executable of this application. The paths to
the application executables are configured in the IDB (Incarnation Data Base). Open the
IDB of your newly installed server components,
UNICORE_Quickstart/unicorex/conf/simpleidb, in a text editor and check the paths of
the PovRay and Bash application. For now, you can ignore the other applications given in
the IDB.

2.3 Start server components

Now we need to start the server components:
cd UNICORE_Quickstart
./ start .sh

3 Clients components Installation

UNICORE offers a set of different clients, each of which serving a different
purpose. Currently the following clients are available:

Grid Programming Environment (GPE) Application Client: prepare, submit and
monitor single task jobs

GPE Expert Client: prepare, submit and monitor multi-task jobs, edit
workows

GPE Filemanager: easy _le transfer and managment of _les on remote sites
UNICORE Commandline Client (ucc): submit and monitor tasks described by
Groovy scripts
Eclipse-based client: currently under development, will replace the GPE Expert
Client eventually

3.1 GPE Application Client
The GPE Application Client is a simple-to-use client for submitting single tasks. For each
application you want to use you need a special plugin, a so called GridBean, which
provides an interface for passing user input to the application.

3.2 Installation
This section describes how to configure the GPE Application Client at first usage.
Download the GPE clients bundle from www.unicore.eu/download and execute the
installer by double-clicking on the jar-_le or entering in command line:

java -jar gpe4unicore - client - package -1.4.3 - installer . jar

Check the installation directory and enter the UNICORE gateway hostname (localhost if
you chose the default), the gateway port (default 8080), and the site name (default
DEMO-SITE), then finish the installation.

Now start the Application Client:

cd GPE4Unicore Client / bin
./ application - client .sh

Under Windows the executable is called application-client.bat.
At first start, the client will create an empty keystore for you and ask you for a new
password. The keystore will hold all the certificates you need to access the grid. Now you
have to load your certificates into the keystore:

Select Settings->Keystore Editor from the menu.

The user certificate which authenticates you to the UNICORE server can be loaded
via Actions->Import Keystore.... Select the demo certificate from the server bundle,

UNICORE_Quickstart / certs / demouser .p12

The password is the user.
Now load the CA certificate with which the client can check if it is talking to a trusted
UNICORE server:

Select Actions->Import Certificate...
and open the demo CA certificate from the server bundle,

UNICORE_Quickstart / certs /fakeca - cert . pem

Save the keystore (File->Save) and exit the keystore editor (File->Exit). The client needs
additional information about where to find the UNICORE server.

Select Settings->Preferences from the menu and select the tab Registries.

The client installer should have already set up an entry with the URL

https :// localhost :8080/ DEMO - SITE / services / Registry

If not, add a new entry now. Leave the preferences window and, if you changed
the registries, perform

File->Refresh Registries from the menu.

3.3 PovRay GridBean
You should see a registry entry in the upper left panel of the Application Client. In figure
1 you can see an example with a registry called localhost.
Right-click on the registry and select Refresh from the popup-menu to load the
UNICORE
sites known to that registry.

For each site, you will maybe see an additional workflow entry, which is of no use in the
Application client. Click on the site itself (not the workflow entry, in figure 1 it is called
DEMO-SITE) and select Connect from the popup-menu.

Now you can create your first job:
rendering an image with PovRay.
Load the appropriate GridBean by selecting File->Load GridBean from the menu and
Opening

GPE4Unicore Client / gridbeans / PovrayGridBean . jar

The second tab now should change its name to PovRay.

Select the PovRay tab, you will see the interface for configuring the PovRay job. In the
PovRay tab, select the Source File tab to specify the input file (see _gure 2). Load a
PovRay source file via File->Open... in the soucre file menu.
You will find an example file in the client installation,

GPE4Unicore Client / tutorial / files / Example . pov

Go back to the Target Systems tab and make sure that one target site is selected. Now you
can submit the job by selecting File->Submit from the menu.
Confirm the maximal lifetime of the job. In the right panel, an entry for the submitted job
should appear. You can right-click on the entry and choose Refresh from the popup-menu
to manually update the status of the job.
When the job has run successful, right-click on it and select Fetch Outcome.
You should see that the Job Outcome tab now becomes active. Select the outcome tab,
and in the outcome tab select the image tab to view the rendered image.

3.4 Script GridBean
Submitting a script with the script GridBean is quite similar to the PovRay job. Load the
script GridBean via File->Load GridBean in the menu, then select

GPE4Unicore Client / gridbeans / ScriptGridBean . jar

Select the Script tab and in the Script tab the Script input tab. In the pull-down menu at
the top of the tab you can choose the script type, for this example select Bash. If you don't
see any entries in the pull-down menu, go back to the Target Systems tab and select a
target site. The client will then read the possible script types from the server.
Now write a short script in the input panel in the middle and save it
(File->Save as...), e.g:

echo " Hello world "
date

Submit the job and fetch the outcome as in previous section.

3.5 Script GridBean & Output Files
A UNICORE jobs runs in a temporary directory which is deleted after the job has
finished. Any file that is to survive the job runtime has to be moved to the job's outcome
directory. The script GridBean does that automatically for standard output and standard
error, and the PovRay GridBean additionally moves the rendered image to the outcome
directory.
If you want to keep any further files, you have to name them explicitly.
Write a short script as in previous section which produces an output file, e.g.:

date > output .txt

Don't forget to save your script!
In the Script tab, select the Output Files tab at the bottom and click the Add...-button.
Enter an arbitrary name in the Identi_er _eld and output.txt in the Filename field, see
figure 3.
Submit the job and fetch the outcome as in previous section. In the Outcome tab, you can
now select the Output Files tab, where your specified output file is listed. Select it to save
it on your local disk by using the Save as...-button on the right.

3.6 Script GridBean & Input Files
What about the other way round, if you need files moved to the job's working directory
before execution?
Create two text files with nearly the same content and save them as text1.txt and text2.txt.

Select the Files tab and edit the entry InputFileset. Click Add File,
choose Local File and enter the path to text1.txt.
Repeat the procedure for text2.txt, see figure 4.
Now write a short script as in previous section that uses those input files, e.g.
a script which compares the files:
diff text1 .txt text2 . txt
Save the script, submit the job and fetch the outcome as in section 3.2.

