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The CoMSON Demonstrator Platform (DP) is a software tool designed to help researchers in testing and validating models and algorithms for coupled simulation of nanoelectronic circuits and devices.
1. Goals of the CoMSON Demonstrator Platform:
The basic idea behind the Demonstrator Platform is to provide an integrated testing framework for researchers interested in new strategies for coupling simulation tools from different physical domains. Within this framework they will be able to implement, test and assess the applicability of their methods

to real life problems without having to enter the details of the lower level tools. At the same time, researchers
interested in new mathematical models for the basic physical phenomena can asses their relevance for 
overall system behavior taking advantage of the coupling with system level simulation tools.

It has has been designed to achieve the following objectives:

• providing a fast prototyping environment in which new and existing algorithms can be tested compared and assessed;

• allowing application of the algorithms, once assessed, to real life industrial

problems.
2. The Structure of the CoMSON Demonstrator Platform:
[image: image1.emf]
        To achieve the results listed above, the structure depicted in Fig. 1 has been

devised. The main components of the DP are:

         1. a library of test examples and experimental measurements to be used as

benchmarks for any new method,

         2. a set of modules each consisting of a collection of functions providing the basic functionality of the single
domain simulators,

3. a controlling programming language with which the aforementioned functions can be connected to form 
simulation algorithms. To separate the implementation of the basic functions from that of the coupling algorithms,

the single domain simulators are organized as independent external libraries from which the DP functions are 
obtained via interfaces (bindings for the controlling language to the external libraries).

          The test example library will contain both real-life industrial problems from the industrial nodes of the 
CoMSON consortium (NXP, Qimonda and STMicroelectronics) and simplified academic examples which display 
the same phenomena but without complications that are not essential for the understanding of the problem. 
This latter class of examples is especially fit for training purposes.

           The initial set of functions in each module will be enriched if new algorithms will be studied that require lower
level functions not initially available.

           The programming language chosen as a controlling language is Octave.

The main factors driving this choice were:

            • the availability of a free language interpreter, and of a free API for building language extensions in C, C++, Fortran;

            • the very high level of compatibility of the Octave interpreter with the Matlab programming language syntax 
which is the de-facto standard for teaching numerical algorithms;

            • GPL licensing terms make it simple to distribute a fully functional system based on Octave including all 
needed software dependencies.

            To better demonstrate the structure of the Demonstrator Platform and its use we will resort to a practical 
example. We will consider device/circuit coupling strategies belonging to two different classes:

            • based on the extension of the device simulator by considering the network equations as general boundary conditions. Such an approach is used in [2] (in the case of stationary semiconductor equations) and in [1] (in the case

of evolutionary semiconductor equations) to derive analytical results for

the coupled system.

             • Based on extension of the circuit simulator by adding the spatially discretized semiconductor equations to 
the system of network equations. 
             This approach was applied in [11] for the numerical analysis of the coupled system and, together with a 
staggered solution approach, in [8, 9] for the simulation of the electro-thermal behavior of an operational amplifier.

             By implementing solvers based on such different coupling strategies, we demonstrate the flexibility of the Demonstrator Platform architecture. Moreover, we show how the abstraction layer provided by the Demonstrator 
Platform can be exploited for further generalization of the implemented algorithms by extending the coupling 
strategies considered to the case where more complex semiconductor models (like the Quantum-Corrected 
Drift-Diffusion class of models as described in [6]) are used for device simulation.
        3.  Algorithms for coupled circuit-device simulation:
           In the current section we introduce two different strategies for simulating an electronic circuit where part of the composing elements is described through

a full 2D Finite Element model and part is represented by lumped elements.

In Sec. 3.1 we introduce the system of equations stemming from the coupling

of circuit and device equations.

           The first algorithm is outlined in Sec. 3.2 and is referred to as circuitdriven algorithm because it is an approach 
that could be applied if one were to extend an existing circuit simulator to include distributed device models.

           The second algorithm, described in Sec. 3.3 is a viable option to extend a device simulation program based on 
the Gummel Map algorithm to include coupled simulation capabilities. In describing the algorithms we will point out

which functionalities need to be exposed to the controlling language by the single domain simulators for their implementation.
            3.1 The Circuit/Device Coupled Problem                                                                      
  Using charge/flux based MNA modeling for the network (see, for example, [10] for more details),  we can write
(1)



Aqq,t(t) + f(x(t),t) =jN 
q(t) − g(x(t)) 
=0 

where Aq is a constant incidence matrix, f(x(t),t) and g(x(t)) are non-linear functions, x is a vector formed by the values of the voltage nodes and of the currents through the inductors and voltage sources and q is the vector containing the values of the capacitor charges and the magnetic fluxes through the inductors. jN  represents the currents flowing from the circuit into the contacts of the distributed device. Furthermore note that the subscript (·),t indicates differentiation with respect to time. 

          Considering, for sake of brevity, the effect of charge transport due to electron carriers only, a very general form to express the equations for the distributed device which can fit the whole class of Quantum Corrected Drift Diffusion (QCDD, see [6]) is as follows 

(2)
P(Φ,n,p) = 0in Ω
Φ|Γi
= φi

                                                                         n,t + Cn(Φ,n) = 0in Ω
n|Γi
= ni

             In (2) Φ,n,p are the electric potential, electron density and hole density inside  the device computational domain Ω respectively; P and Cn  are non-linear differential operators for the Poisson equation and electron current continuity equation respectively; Γi is the ith contact of the device and Φi and ni are the values of the electric potential and electron density on each of the contacts.

                             From the values of Φ and n one can compute the charges qS i

jSi  at the contacts of the device as
∫ Γi ε∇Φ · ν dγ=qs i
and currents 

∫Γi Jn(Φ,n) · ν dγ = jsi 
where Jn represents the current density in the device, and ν being the unit outward normal to the boundary of the device. Finally the circuit and device can be coupled by enforcing charge conservation:

(3)


jN + As(js + qs,t) = 0 
α(φN + VBI) 
= As x 

In (3) As  is an incidence matrix indicating to which nodes in the network

the contacts of the distributed device are connected, ΦN  are the voltages of

the network nodes connected to the device and VBI  are the corresponding

built-in voltages, α is a scaling factor and the vectors js = [js
...js
]T  and

1
1

qs = [qs1 ...qs1 ]T are the currents and charges flowing through the distributed device contacts. 

3.2 The Circuit-Driven Algorithm 

The basic idea behind this approach is to express the complete coupled system in a form as similar as possible to the MNA equations (1). 

By using (1) and (3) and discretizing in time by applying Rothe’s method 
and a BDF(m) formula, we can write the coupled problem as

                      β0 (Aqq(tn) + Asqs(tn)) +

                  +f(x(tn),tn)+Asjs(Asx)=
                  =− ∑ k=1...mβk (Aqq(tn−k) + Asqs(tn)) 



(4)

             q(tn) − g(x(tn))
=0
                                          qs(tn) − gs(As x(tn))
=0
To solve this system with a Newton method we need a function to compute 

•  Currents and charges flowing through the distributed device contacts as a function of the node voltages 

•  Derivatives of such currents and charges with respect to the node voltages (local capacitance and conductance matrices) 

Such function is implemented along the following lines. 
1 Solve the DD equations with the Gummel map algorithm

2 Linearize the Poisson equation around the solution and compute the charges as the flux of −ε∇Φ through the contacts 

3 Linearize the Continuity equation around the solution and compute 
the currents as the flux of −ϵµn(n∇Φ − Vth∇n) through the contacts 
4 Obtain the capacitance and conductance matrices via a Schur comple-ment technique from the linearized Poisson (continuity) equation 

The main requirement to implement this algorithm in the framework we described is that, to perform steps 2-3, we need the device simulation module to define functions that, given the contact potentials as input, produce as output the matrices for the linearized Poisson and continuity equation at each integration time point. 

Once such matrices are available the computation of conductance and capacitance matrices is very straightforward. 

Consider for example the Poisson equation for a device with two contacts. The discrete, linearized Poisson equation has the form

  │ P11
P1I 
(5)
 │ 0 
P22 P2I


│    │(φ1 + vBI 1 )1Γ 1 │
                                       │q′ s1 │
│  │ (φ2 + vBI )1Γ  │
=       │q′ 
│
                          where 1Γ i


     2
   2
                                        s2

        │PI1 PI2 PII │  │
ΦI                  │               │0   │
represents a column vector of all ones with as many elements as 

there are on the mesh for the i-th contact, ΦI is the vector with the values of 
the electric potential at the internal mesh nodes, and q′ s1  is the vector of the 

charges at the mesh nodes on the i-th contact. 
The total charge at the contacts can be expressed as 

qs
= 1Γ
q′

1
1


s1 ;   qs2  = 1Γ2 q′s2 

and by eliminating ΦI  one can get a relation for the charges in terms of the

contact potentials of the form

(qs
1
(qs
2  
where cij is the derivative of charge qi with respect to node voltage Φj. 
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3.3 The Device-Driven Algorithm 

The Device-Driven algorithm we present is a generalization of the well-known Gummel algorithm for the solution of the DD equations where the circuit equations are included as boundary conditions for each of the decoupled problems. 

To set up such algorithm we need to decouple the problem into two sub-problems, corresponding to the Poisson and continuity equations respectively:
Problem A (Poisson) 

P(As x,ΦI,qs)
=0

β0(Aqq(tn) + Asqs(tn))+ f(x(tn),tn) + Asjs =

(6)

q(tn) − g(x(tn))

Problem B (Continuity)

(
)


∑

=− 
βk(Aqq(tn−k) + Asqs(tn−k))

k=1...m

=0

Cn
As x,Φn I,js


=0 

β0(Aqq(tn) + Asqs(tn))+ f(x(tn),tn) + Asjs =

(7)

q(tn) − g(x(tn))


∑

=− 
βk(Aqq(tn−k) + Asqs(tn−k))

k=1...m

=0 

In (6) ΦI is the value of the electrical potential at the internal nodes of the 
device mesh x(tn) is the vector of the network node voltages, the network and 
device node charges are q(tn) and qs(tn) and the current through the device

contacts is js. 
In (7) Φn I     represents the vector  of the values of the quasi-Fermi potentials  at the internal nodes of the device mesh. As in Sec. 3.2 a BDF(m) formula has been applied for time discretization. 
Having defined the two subproblems above, the procedure to be carried out at each time step can be described as follows: 

iterate through steps 1 and 2 below until consistency is reached: 

1.
Solve the non-linear Poisson equation [A] for the unknowns ΦI, x(tn), 

q(tn), qs(tn) considering js a known quantity. 

2.
Solve   the   non-linear   continuity   equation   with   unknowns 

ΦnI ,x(tn),q(tn),js and considering qs(tn) fixed 

Note that both step 1 and step 2 involve the solution of a system of nonlinear equations so they require two more Newton loops to be nested within the iteration described above. 

To be able to impose the appropriate boundary conditions we need the circuit simulation module to define a function that, given the values of the network unknowns as input, produces as output the matrices for the linearized MNA equations. This is the main requirement to be able to implement the Device-Driven method in our framework. 


represents 

ot at the internal nodes of the device mesh. As in Sec. 3.2 a BDF(m) formula has been applied for time discretization. 
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