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Abstract

This paper presents the application of the least-squares field integrated method based on hybrid linear finite
elements in time-domain electromagnetic (EM) problems with high contrast interfaces. The method proposes the
use of edge based linear finite elements over nodal elements and edge elements of Whitney form. It shows how
the equations have to be accommodated to yield a correct solution. It proposes a general strategy to combine edge
linear finite elements and nodal linear finite elements. The resulting algorithms are stable and achieve high quality
field interpolation even in the presence of very high contrasts. The performance and stability of the new method
is shown by exhibiting the time-domain solution of a high contrast EM problem for which an analytic solution is
known. Unaxial Perfectly Matched Layers are used to truncate the computational domain with absorbing boundary
when needed.

I. INTRODUCTION

In strongly heterogeneous media, the constitutive parameters can jump by large amounts upon crossing the
material interfaces. On a global scale, the EM field components are, therefore, not differentiable and Maxwell’s
equations in differential form cannot be used: one has to resort to the original integral form of the EM field
relations as the basis for the computational method. The appropriate integral form is provided by the classical
interrelations between the curl of the electric/magnetic field strength along a closed curve and the time rate of
change of the magnetic/electric flux passing through a surface with the circulation loop as boundary. For these to
hold, only integrability of the field is needed, which condition we impose in accordance with the physical condition
of boundedness of the field quantities. To satisfy the constitutive relations (that are representative of physical volume
effects), a fitting continuation of the boundary representations of the field components of an element into its interior
is needed. We construct a consistent algorithm that meets all of these requirements, using a simplicial geometrical
discretization combined with piecewise linear representation of the electric and magnetic field components along
the edges of the elements, piecewise linear extrapolationsinto the interior of the elements and taking constant
values of the constitutive coefficients in these interiors.We also use piecewise linear representations. Furthermore,
we use NETGEN[13] to discretize the computational domain with a 2D(triangular)/3D(tetrahedron) mesh. We use
simple boundary conditions (PEC, PMC) to truncate the computational domain. After properly assembling the
local matrices, we obtain a symmetric positive definite system of algebraic equations, which we solve with a
preconditioned iterative method. We test the accuracy of the method by implementing the four domain problem
treated analytically in [8] in the time domain using our method. This experiment also documents the stability of
our approach, we can provide theoretical proof as well.

II. M ESH GENERATION

In a finite element package, geometrical discretization is done by a mesh generator. With a non-uniform mesh,
we have good control over the coarseness of the mesh. In particular, the mesh should be refined where more local
features reside, so that the numerical error can be minimized; meanwhile, the mesh should be coarser where the
change in configuration is smooth. It also has been shown thatequilateral triangles are the best shapes of finite
elements. Any triangle that is close to being equilateral introduces small numerical dispersion. We use NETGEN[13]
to generate 2D/3D mesh. A triangle finite element is identified with three vertexes delimiting it. It is advantageous
to number the vertexes in such a way that the face vectors of the all the simplexes point to the same direction
(either the positivez direction or the negativez direction, here we choose the positivez direction.). This implies
that the vertexes delimiting an element should be numbered counterclockwise.
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Fig. 1. Degrees of freedom on an two dimensional consistently linear finite element

III. F INITE ELEMENTS

Due to the interface conditions, a straight-forward application of the linear expansion function would lead to
large numerical error or excessive mesh refinement. Applying these interfaces conditions as constraints would result
in semi-positive definite system matrices which are difficult to solve (see [12], [3]). It is advantageous to take them
into account when discretizing the field quantities. The keypoint in the discretization technique is to approximate
the field quantities, which are known to be continuous, with nodal linear finite element, and the discontinuous ones
are approximated with edge based finite elements.

A. Geometrical quantities

Before introducing the expansion functions (shape functions) of linear finite elements, we shall define a few
geometrical quantities (see Fig. 1). Let∆(ri, rj , rk) or ∆(i, j, k) be the triangle delimited by three vertexes with
coordinatesri, rj , rk; |∆(i, j, k)| be the area in triangle∆(i, j, k); ri be the spatial coordinate of the vertexi;
eij = rj−ri

|rj−ri| be the unit vector pointing from vertexi to j; ak = iz × eij be the normal unit vector perpendicular

to the edge delimited by vertexi and j; φi(r) = |∆(r,rj,rk)|
|∆(ri,rj,rk)| ,∀r ∈ ∆(ri, rj , rk) be the linear shape function. By

definition,φi(r) is equal to1 on vertexi and0 on other vertexes in∆(ri, rj , rk).

B. Nodal linear finite element

In a homogeneous sub-domain, the field quantitiesv are continuous; to preserve this continuity, the field quantity
should be approximated with nodal linear finite element. Thelinear expansion function can be used to construct
the local linear interpolationv of v in ∆(ri, rj , rk).

v(r) =
∑

l∈(i,j,k)

v(l)φl(r) (1)

Both the tangential component and normal component ofv are continuous across the interface. For quantities
belonging toH1(Ω) = {v ∈ L2(Ω); v ′ ∈ L2(Ω)}. It has the approximation error of the orderO(h2) (whereh
denotes the mesh size).

C. Edge based consistently linear finite elements

To keep the tangential components of the field quantitiesu (u is a vectorial quantity) continuous across the
interfaces, we shall only use the well defined continuous components (ulh wherel, h ∈ (i, j, k), l /=h, see Fig. 1)
on vertexes to construct a linear interpolation over any triangle∆(i, j, k). u(i) specifies the two dimensional field
quantity on vertexi. The quantityu on a node of a finite element can be fully expressed in terms of the tangential
components on the incident edges:

u(i) = uij
aj

eij · aj
+ uik

ak

eik · ak
=

∑

l∈(i,j,k),l/=i

uil
al

eil · al
(2)
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Fig. 2. The allocation of the nodal- and edge- linear finite elements.

With u defined on each vertex, the linear shape functionφl(r) can be used to construct the local linear interpolation
u(r) of u(r), r ∈ ∆(i, j, k), as follows:

u(r) =
∑

l∈(i,j,k)

u(l)φl(r) =
∑

l∈(i,j,k)

∑

h∈(i,j,k),h/=l

ulh
ah

elh · ah
φl(r) (3)

unlike the Whitney-1 elements, the edge based consistentlylinear finite element does not satisfy the divergence free
property; therefore we need to enforce the divergence free condition explicitly. On the other hand, for quantities
belonging toH(curl; Ω) = {v ∈ [L2(Ω)]nd : ∇ × v ∈ [L2(Ω)]nd}, the consistently linear expansion has the
local approximation error of the orderO(h2) instead ofO(h) for Whitney edge elements. The consistently linear
expansion function was used first by Gerrit Mur in [6].

D. Combination of node- and edge- finite element expansion

To preserve the continuity properties of field quantities without introducing too many unnecessary unknowns,
we use edge based consistently linear finite elements only onmaterial interfaces, node linear finite elements in
homogeneous subdomains (see Fig. 2). Hereinafter, we referto this combination as hybrid linear finite elements.

IV. T WO DIMENSIONAL MAGNETOSTATIC PROBLEM

To study the merits of hybrid finite element and its convergent rate, we shall take a simple two dimensional
magnetostatic problem with analytic solutions.

A. The magnetostatic equations

In the computation domainΩ with its boundary∂Ω, given an arbitrary surfaceS with its boundary∂S, The
equations to be solved in magnetostatic problem are list as follows:

∮

∂S
H · dl =

∫

S
J · ds (4)

∮

S
B · ds = 0 (5)

and interface condition
[n · B] = 0 on Γi (6)

[n × H] = 0 on Γi (7)

[A] = limA(Γ+) − limA(Γ−) denotes the jump of a quantityA across the material interfaceΓ. n is a unit vector
normal to the interface. Finally, the constitutive relation

B = µrµ0H (8)
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B. The (weighted) least-squares functional

With appropriate edge/hybrid finite elements to approximate magnetic field strengthH, the interface condition
Eq. (7) is satisfied in the whole computational domain; therefore we don’t have to consider that equation in the
least-squares formulation. LetN be the number of finite elements in the computational domain;each finite element
haven faces (two-dimensional triangle elements are extended as prism elements with infinite height. Prism element
has4 faces.Sj, 1 ≤ j ≤ 4); the jth face ofith finite element be donated asSij with its boundary defined as∂Sij ,
over the computational domainΩ , the least-squares functional is defined as:

I : H(curl) → R,

I(H) =
N∑

i=1

{
n∑

j=1

a1(ij)‖
∮

∂Sij

H · dl −
∫

Sij

J · ds‖2 + a2(ij)‖
∮

∪n
j=1

Sij

(µH · n) ds‖2}

+
∑

for all Γi

‖[(n · µH)]‖2 (9)

for which the exact solution is the minimizer.a1(ij), a2(ij) are positive weighting factors. With appropriate
boundary conditions (eg. PEC, PMC) implemented either implicitly by adding the corresponding squared terms
into the least-squares functional or explicitly by restricting the shape functions to satisfy the boundary conditions,
the magnetic field strengths can be solved by finding the minimizer to the least-squares functionalI(H); On the
other hand, the least-squares functionalI(H) serves as a nature indicator for finite element refinement.

C. A test problem

Let us consider two dimensional domainΩ = {0 ≤ x ≤ 1, 0 ≤ y ≤ 1}, andJ is chosen such that the exact
magnetic field strength is:

Hxy =
π sin πx cos πy

µ
ix − π cos πx sin πy

µ
iy (10)

the electric current in the domain is:

J =
2π2 sin πx sin πy

µ
iz (11)

The chosen material configuration is:

µr =

{
1000 if 0 ≤ x ≤ 0.5, 0 ≤ y ≤ 0.5

1
(12)

The above analytic solution satisfies the magnetostatic equations with PEC boundary condition.

D. Numerical result

With the same interface conforming mesh and the same least-squares functional, we compute the magnetic field
strengths in domainΩ with hybrid linear finite elements, nodal linear finite elements and edge linear finite elements.
The linear system of equations is solved with preconditioned iterative method (see Section VI-J2). The computed
field strengths are sampled and plotted on the same points of the domainD. Note that, In Fig. 3, the solutions
of the edge based finite element method and hybrid finite element method display correctly the singularity in the
left-bottom sub-domain; on the contrary, the solution of the node based linear finite element least-squares method
tends to be incorrect in the singular region. Similar resultis observed in [4]. To study the rate of convergence of
these least-squares finite element methods, we choose to experiment this method with the test problem and the a
homogeneous material configuration (µr = 1). The relative mean square error is plotted in Fig. 4. It is obvious from
Fig. 4(a) that the edge element LSFEM and its hybrid version have the same convergence rate as the node based
linear finite element method; From Fig. 4(b), it can be seen that the node based LSFEM converges to a spurious
solution in the case of high contrast.
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Fig. 3. Magnetic field strengths of the test problem, the solution of nodal linear finite elements based method (a), the solution of hybrid
linear finite elements based method(b), the solution of edgelinear finite elements based method (c), the analytic solution (d)

V. DOMAIN INTEGRATED FIELD EQUATIONS

In the computation domainΩ with its boundary∂Ω, given a (sufficiently smooth and small) surfaceS with
boundary∂S, Maxwell’s equations in the surface integrated form are

∮

∂S
H · dl =

∫

S
{∂tD + σeE + J imp} · ds (13)

∮

∂S
E · dl = −

∫

S
{∂tB + σmH + Kimp} · ds (14)

Let J tot = ∂tB + σmH + Kimp, Ktot = ∂tD + σeE + J imp The compatibility relations on a volumeV with its
closed surface∂V in their integrated form are:

∮

∂V
J tot · ds = 0 (15)
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Fig. 4. The relative mean square error of numerical solutions in homogeneous domain(a), The relative mean square error of numerical
solutions in test configuration with high contrast (b).N is the number of finite element used in one dimension

∮

∂V
Ktot · ds = 0 (16)

Computational domain is truncated by PEC and PMC boundary conditions:

n × E = 0 on ∂Ω1 n · Ktot = 0 on ∂Ω1 (PEC boundary)

n × H = 0 on ∂Ω2 n · J tot = 0 on ∂Ω2 (PMC boundary)

where∂Ω1 ∩ ∂Ω2 = φ, ∂Ω1 ∪ ∂Ω2 = ∂Ω; ε(xr) is the permittivity,µ(xr) the permeability.σe(xr) the electric
conductivity,σm(xr) the magnetic conductivity. Last but not the least, the interface conditions are:

[n · Ktot] = 0 on Γi [n × H] = 0 on Γi

[n · J tot] = 0 on Γi [n × E] = 0 on Γi

where[A] = limA(Γ+)−limA(Γ−) denotes the jump of a quantityA across the material interfaceΓ. The constitutive
relations are:

D(xr, t) = ε(xr)E(xr, t) B(xr, t) = µ(xr)H(xr, t)

VI. T WO DIMENSIONAL ELECTROMAGNETIC PROBLEM: THE PERPENDICULAR POLARIZATION CASE

In this section, we show how to utilize the hybrid linear finite elements to solve 2D electromagnetic problems.

A. Two-dimensional electromagnetic problems and spatial-temporal- discretization

The 2D problem is characterized by invariance in thez direction. And we consider perpendicular polarized field
only. In this case, the electric field strength is interpolated with nodal linear finite elements, since this field is always
tangential to the material interfaces. The magnetic field strength, however, is approximated by hybrid linear finite
elements as mentioned in Section III-D. This means that the magnetic field strength is interpolated by edge based
linear finite element at the material interfaces and by nodallinear finite element in homogeneous sub-domains.
Our discretization procedure is similar to that in [9], except that the discretized Maxwell’s equations are derived
there for static problems, while we work with the full Maxwell system in the time-domain. To implement a time
stepping scheme for the spatially discretized Maxwell’s equations, we introduce the time instanceti = iδt, where
δt > 0 is the time step, and integrate Maxwell’s equations fromt = ti−1 to t = ti. All integrals that can not be
computed analytically are discretized using the trapezoidal rule. To maintain accuracy in the time-domain and avoid
computing too many unnecessary time-steps, we choose the time-stepδt corresponding to a CFL number between
1 and 2 for the smallest element (see [7]).
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Fig. 5. The prism element.

B. Normalization

Before formulating the system of equations, it is importantto normalize these system equations so that the system
has better spectral properties. LetL be a problem related reference length, we normalize the spatial coordinate,
time coordinate, field quantities, EM sources and matter parameters as:

x̂ =
x

L
t̂ =

c0t

L
Ê(x̂, t̂) = E(Lx̂,

Lt̂

c0
)

Ĥ(x̂, t̂) =

√
µ0

ε0
H(Lx̂,

Lt̂

c0
) Ĵ imp(x̂, t̂) = L

√
µ0

ε0
J imp(Lx̂,

Lt̂

c0
)

Kimp(x̂, t̂) = LKimp(Lx̂,
Lt̂

c0
) σ̂e(x̂) = L

√
µ0

ε0
σe(Lx̂)

σ̂m(x̂) = L

√
ε0

µ0
σm(Lx̂) ε̂(x̂) = ε(Lx̂) µ̂(x̂) = µ(Lx̂)

We implement the least-squares field integrated method withnormalized Maxwell’s equations.

C. Discrete Surface Integrated Field Equations

Detailed derivation is given in Jorna’s thesis, here we givea short survey on these equations. Applying the
equation 13 on the face delimited by pointsi = P1, j = P2, k = P3 see Fig.5, and make use of the linear
expansions. We get:

1

2
li[Hk(t) · ekj + Hj(t) · ekj ] +

1

2
lj [Hi(t) · eik + Hk(t) · eik] +

1

2
lk[Hj(t) · eji + Hi(t) · eji]

+
A

3
[(σe

izz + εizz∂t)Eiz(t) + (σe
jzz + εjzz∂t)Ejz(t) + (σe

kzz + εkzz∂t)Ekz(t)]

= −A

3
[J imp

iz (t) + J imp
jz (t) + J imp

kz (t)] (17)

WhereHl(t), l ∈ {i, j, k} may be represented by either nodal linear expansion (Eq. 1) or edge linear expansion
(Eq. 2). Apply the equation 14 on the face delimited by pointsj = P2, k = P3, k

′ = P6, j
′ = P5, and make use
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of the linear expansions. We get:

Ekz − Ejz = −1

2
li[K

tot
k · ai + Ktot

j · ai] (18)

Apply the equation 14 on the face delimited by pointsi = P1, k = P3, k
′ = P6, i

′ = P4 and use the linear
approximation. We get:

Eiz − Ekz = −1

2
lj[K

tot
i · aj + Ktot

k · aj ] (19)

Apply the equation 14 on the face delimited by pointsj = P3, i = P2, i
′ = P4, j

′ = P5 and use the linear
approximation. We get:

Ejz − Eiz = −1

2
lk[K

tot
j · ak + Ktot

i · ak] (20)

D. Constitutive Relations

To determine the electromagnetic field strength, the constitutive relations are described via equations

Ktot(t) = σmH(t) + µ∂tH(t) + Kimp(t) (21)

assume the magnetic constitutive parameters are isotropicwith respect tox and y direction, we have, for edge
expansions:

Ktot
i (t) − (σm

i + µi∂t)[Hij(t)
aj

eijaj
+ Hik(t)

ak

eikak

] = Kimp
i (t),

i/=j /=k; i, j, k ∈ {P1, P2, P3} (22)

and for nodal element:

Ktot
i (t) − (σm

i + µi∂t)Hi(t) = Kimp
i (t),

i ∈ {P1, P2, P3} (23)

To simplify the system to be solved, we substitute the consititutive relations into equations (18-20) and eliminate
unknownKtot

i (t).

E. Discrete system

The discrete surface integrated equations should be then temporally discretized with the trapezium rule. All these
discrete equations together form a system of linear equations to be solved.

1) Discrete local system of linear equations:For a triangular finite element, the set of local (over-determined)
discrete integrated field system is (Note that: in this equation, we make no distinguish between the local matrices
associated with nodal finite elements and those associated with edge finite elements. As in the remaining of this
paper, the difference will be clear) :

(Ce +
∆t

2
Le +

∆t

2
Ke)

[
He(n + 1)
Ee(n + 1)

]
= (Ce − ∆t

2
Le − ∆t

2
Ke)

[
He(n)
Ee(n)

]

+
∆t

2
F e(

[
Ke(n + 1)
Je(n + 1)

]
+

[
Ke(n)
Je(n)

]
)

Ke =

[
0 De

e

−De
h 0

]
, Ce =

[
Me

µ 0

0 Me
ε

]
, Le =

[
Me

σm 0
0 Me

σe

]
, F e =

[
F e

K 0
0 F e

J

]

Note that: the matrices with superscripte are local matrices, and the ones without superscripte are global matrices.
If the media is loss-less, thenLe = 0 andL = 0. The local matrices are different for nodal finite element and edge-
finite element. For the nodal finite element∆(1, 2, 3) (where the vertexes are numbered locally and1, 2, 3 denote
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the local numbering of the vertexes. LetA be the area of∆(1, 2, 3). ), the local matrices for nodal finite element
and the corresponding discrete interface condition matrixare defined as follows:

Xe =

[
Xe

1 0
0 Xe

2

]
,Xe

1 =




σm
1

µ1

0 0 0 0 0

0 σm
1

µ1

0 0 0 0

0 0 σm
2

µ2

0 0 0

0 0 0 σm
2

µ2

0 0

0 0 0 0 σm
3

µ3

0

0 0 0 0 0 σm
3

µ3




,Xe
2 =




σe
1

ε1

0 0

0 σe
2

ε2

0

0 0 σe
3

ε3


 ,

De
e =




−1 1 0
0 −1 1
1 0 −1


 ,Me

ε =
[

A
3 ε1

A
3 ε2

A
3 ε3

]
, F e

J =
[

A
3

A
3

A
3

]
,

De
h =

[
e32·ixl1

2
e32·iyl1

2
e13·ixl2

2
e13·iyl2

2
e21·ixl3

2
e21·iyl3

2

]
,

Me
µ =




a3·ixl3
2 µ1

a3·iyl3
2 µ1

a3·ixl3
2 µ2

a3·iyl3
2 µ2 0 0

0 0 a1·ixl1
2 µ2

a1·iyl1
2 µ2

a1·ixl1
2 µ3

a1·iyl1
2 µ3

a2·ixl2
2 µ1

a2·iyl2
2 µ1 0 0 a2·ixl2

2 µ3
a2·iyl2

2 µ3


 ,

F e
K =




a3·ixl3
2

a3·iyl3
2

a3·ixl3
2

a3·iyl3
2 0 0

0 0 a1·ixl1
2

a1·iyl1
2

a1·ixl1
2

a1·iyl1
2

a2·ixl2
2

a2·iyl2
2 0 0 a2·ixl2

2
a2·iyl2

2


 ,

Ke
nodal =

[
0 De

e

−De
h 0

]
, Ce

nodal=

[
Me

µ 0
0 Me

ε

]
,

Le
nodal = Ce

nodalX
e, F e

nodal=

[
F e

K 0
0 F e

J

]
,

He
nodal =

[
H1x H1y H2x H2y H3x H3y

]
, Ee

nodal=
[

E1 E2 E3

]
,

Ke
nodal =

[
Kimp

1x Kimp
1y Kimp

2x Kimp
2y Kimp

3x Kimp
3y

]
, Je

nodal=
[

J imp
1 J imp

2 J imp
3

]

The matrices with subscriptnodalare the matrices for nodal finite element. Note thatXe is a non-negative diagonal
matrix. For edge finite element, the local matrices and the discrete interface condition matrix are defined as follows:

D̂e
e =




−1 1 0
0 −1 1
1 0 −1


 , M̂e

ε =
[

A
3 ε1

A
3 ε2

A
3 ε3

]
, F̂ e

J = c4

[
A
3

A
3

A
3

]
,

D̂e
h =

[
l3
2

−l2
2

−l3
2

l1
2

l2
2

−l1
2

]
,

M̂e
µ =




a2·a3

e12·a2

l3
2 µ1

a3·a3

e13·a3

l3
2 µ1

a1·a3

e21·a1

l3
2 µ2

a3·a3

e23·a3

l3
2 µ2 0 0

0 0 a1·a1

e21·a1

l1
2 µ2

a3·a1

e23·a3

l1
2 µ2

a1·a1

e31·a1

l1
2 µ3

a2·a1

e32·a2

l1
2 µ3

a2·a2

e12·a2

l2
2 µ1

a3·a2

e13·a3

l2
2 µ1 0 0 a1·a2

e31·a1

l2
2 µ3

a2·a2

e32·a2

l2
2 µ3


 ,

F̂ e
K =




a2·a3

e12·a2

l3
2

a3·a3

e13·a3

l3
2

a1·a3

e21·a1

l3
2

a3·a3

e23·a3

l3
2 0 0

0 0 a1·a1

e21·a1

l1
2

a3·a1

e23·a3

l1
2

a1·a1

e31·a1

l1
2

a2·a1

e32·a2

l1
2

a2·a2

e12·a2

l2
2

a3·a2

e13·a3

l2
2 0 0 a1·a2

e31·a1

l2
2

a2·a2

e32·a2

l2
2


 ,

Ke
edge =

[
0 D̂e

e

−D̂e
h 0

]
, Ce

edge=

[
M̂e

µ 0

0 M̂e
ε

]
,

Le
edge = Ce

edgeX
e, F e

edge=

[
F̂ e

K 0

0 F̂ e
J

]
,

He
edge =

[
H12 H13 H21 H23 H31 H32

]
, Ee

edge=
[

E1 E2 E3

]
,



10

Ke
edge =

[
Kimp

12 Kimp
13 Kimp

21 Kimp
23 Kimp

31 Kimp
32

]
, Je

edge=
[

J imp
1 J imp

2 J imp
3

]
.

The global matricesC,L,K are assembled from the local matrices by simply stacking thelocal equations in order
(Note that, local numbering of the unknowns is mapped to the global numbering of the unknowns). These global
matrices are tall matrices with full column rank.

2) Discrete interfaces conditions:For nodal finite elements, the interfaces continuity is (over-)satisfied, therefore,
there is no need for enforcing interface conditions on nodalfinite elements. For edge- finite elements, we need to
enforce the interface condition[n · Ktot] = 0 on Γi, other interface conditions are satisfied automatically bythe
field discretization. The interfaces conditions are to be enforced point-wise-ly. Suppose pointj andk are on the
interfaceΓi, the edgejk is shared by two triangular finite elements∆(i, j, k) and∆(j, l, k) on both sides ofΓi as
shown in Figure 2. The following equation enforces the interface condition on pointj:

µ−
j

ai · ai

eji · ai
Hji(n + 1) + µ−

j

ai · ak

ejk · ak
Hji(n + 1) + µ+

j

al · al

ejl · al
Hjl(n + 1) + µ+

j

al · ak

ejk · ak
Hjk(n + 1)

= µ−
j

ai · ai

eji · ai
Hji(n) + µ−

j

ai · ak

ejk · ak
Hji(n) + µ+

j

al · al

ejl · al
Hjl(n) + µ+

j

al · ak

ejk · ak
Hjk(n) (24)

µ−
j is the permeability in∆(i, j, k) andµ+

j is the permeability in∆(j, l, k). Note that, the enforcing of the point-wise
interface condition is not always necessary, because the interfaces conditions are actually enforced in its integral
form by the discrete integrated field equations (Add the surface integrated field equations for edgejk in ∆(i, j, k)
and in ∆(j, l, k), and you will get the corresponding interface condition on edge jk in its integral form). The
point-wise interface conditions are enforced to make sure the global system has full column rank and to improve
the condition number of the least-squares system. The same kind of equation will be set for pointk, the global
discrete interfaces conditionsWu(n+1) = Wu(n) is a row-wise collection of these point-wise-ly discrete interface
conditions.

F. The least-squares system

After assembling all these global matrices, the set of global over-determined equations to be solved is:

(C +
∆t

2
L +

∆t

2
K)u(n + 1) = (C − ∆t

2
L − ∆t

2
K)u(n) +

∆t

2
F

f(n + 1) + f(n)

2
Wu(n + 1) = Wu(n)

Whereu collects the unknowns andf collects the source terms. After least-squares solution, we have:

[(C +
∆t

2
L +

∆t

2
K)H(C +

∆t

2
L +

∆t

2
K) + W HW ]u(n + 1) =

[(C +
∆t

2
L +

∆t

2
K)H(C − ∆t

2
L − ∆t

2
K) + W HW ]u(n)

+(C +
∆t

2
L +

∆t

2
K)HF

f(n + 1) + f(n)

2
(25)

In practice, the matrix(C + ∆t
2 L + ∆t

2 K)H(C + ∆t
2 L + ∆t

2 K) as a whole is assembled from the local matrix
(Ce + ∆t

2 Le + ∆t
2 Ke)H(Ce + ∆t

2 Le + ∆t
2 Ke) using the classic matrix assembly procedure of finite element method

(so is the righthand side of the linear system); then it is added with W HW to form the system matrix which is
obviously symmetric positive definite. Note that, the matricesL,C,K are never constructed globally in practice;
however, they are useful for theoretical analysis.

G. The (weighted) least-squares functional

The least-squares integrated field method can be formulatedas finding the minimizer to a weighted Least-
squares functional, for which, the exact solution is the minimizer. Let N be the number of finite elements in the
computational domainΩ; n be the number of faces in each finite element (two-dimensional triangle elements are
extended as prism elements with infinite height. Prism element has4 faces.{Sj, 1 ≤ j ≤ 4}); Sij be thejth face



11

of the ith element, of which the boundary is defined as∂Sij; Γi be the material interfaces. Over the time interval
{[tk−1, tk] : 0 < tk ≤ t, 0 ≤ i ≤ M, tk = tk−1 + δt}, we define the least-squares functional inΩ as:

I : H(curl,Ω) ×H(curl,Ω) → R,

I(E,H) =
1

2

N∑

i=1

n∑

j=1

c1(ij)|
∫ tk

tk−δt

∮

∂Sij

H · dl dt −
∫ tk

tk−δt

∫

Sij

J tot · ds dt|2

+
1

2

N∑

i=1

n∑

j=1

c2(ij)|
∫ tk

tk−δt

∮

∂Sij

E · dl dt +

∫ tk

tk−δt

∫

Sij

Ktot · ds dt|2

+
1

2

N∑

i=1

c3(ij)|
∮

∪n
j=1

Sij

Ktot · ds|2 +
1

2

∑

all points onΓi

c4|[n · Ktot]|2 (26)

where c1(ij), c2(ij), c3(ij) and c4 are positive weighting factors. We choose the weighting factors such that
the coefficients of the equations are of the same magnitude. We may enforce the compatibility equation in the
least-squares formulation to eliminate spurious solutions (Note that, the compatibility equation is subsumed in the
integrated field equations to all faces of finite elements, therefore, a small or even zero weighting factor can be
used). We implement the boundary conditions either implicitly by adding the corresponding squared terms into the
least-squares functional or explicitly by restricting theshape functions to satisfy the boundary conditions. We then
solve the 2D electromagnetic problem by finding the minimizer to the least-squares functionalI(E,H) at each time
instance. The sufficient condition for the finite element approximationE ∈ H(curl,Ω) andH ∈ H(curl,Ω) be the
minimizer of I is that the variations ofI with respect roE andH equal to0. Note that: the method we use here is
quite similar to the Domain Integrated Field Equation method developed by Peter Jorna et al in [8]. However, due
to our assumption that strong inhomogeneity only exists across several material interfaces, the constitutive relations
have been used to eliminate the unknown electromagnetic flux. Therefore, the constitutive relations are satisfied
exactly and do not participate the least-squares functional minimization procedure. Moreover, the idea, presented
by Adrianus T. de Hoop et al in [5], to use node element in homogeneous domain and reserve edge- and face-
element expansions for inhomogeneous region comes to reality in this paper. We also want to stress that there
have been quite a lot of effort to combine the use of node- and edge- element expansion in literature, see [11],
[10], [9], etc. Our method differs from all these methods by utilizing hybrid finite elements to solve time-domain
electromagnetic problems based on field integrated equations. We also want to stress that using nodal finite element
in homogeneous domain not only save computational time but also model the physics more precisely for the field
quantities are continuous in homogeneous (sub-)domain.

H. Consistency

In the system formulation, The equations for boundary conditions are weighted more than other equations, in
the numerical solution, they are almost exactly satisfied, therefore, we may consider them as exact equations and
eliminate some redundant unknowns in our analysis (which wedon’t do in practice). For simplicity, we also assume
σe = 0, σm = 0, ρ = 0 in the whole computational domain. The Space-time Maxwell’s equations can be stated as
a constrained initial value problem: {

Cu̇ + Ku = f(t)
Wu = 0

(27)

whereu =
[

H E
]T

; u̇ is the time derivative ofu; The least-squares solution in the trapezoidally discretetime
domain is the solution of the linear system:

[(CT +
∆t

2
KT )(C +

∆t

2
K) + W TW ]u(n + 1)

−[(CT +
∆t

2
KT )(C − ∆t

2
K) + W T W ]u(n) = (CT +

∆t

2
KT )

(f(n + 1) + f(n))

2
∆t
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A discrete approximation is said to be consistent if it converges to the correct governing equation as the time step
size tends to be zero. That is: the residual:

r(n + 1) = [(CT +
∆t

2
KT )(C +

∆t

2
K) + W T W ]u(n + 1)

−[(CT +
∆t

2
KT )(C − ∆t

2
K) + W TW ]u(n)

− (CT +
∆t

2
KT )

(f(n + 1) + f(n))

2
∆t

should tend to zero as exact solution is used and time step tends to zero. Moreover, if̺ is the largest positive
integer such thatrn+1 = O(∆t̺), then the algorithm is said to be of order̺. Or equivalently,̺ is referred to as
the order of accuracy or the rate of convergence of the algorithm referring to time step (at this step of analysis,
we neglect the space discretization error for simplicity).Expandingu((n + 1)∆t) andf((n + 1)∆t) with Taylor
series about the time pointn∆t, and using Eq. (27), we obtain:

r(n + 1) = CTK
∆t2

2
u̇(n∆t) +

∆t3

4
KTKu̇(n∆t)

− CT ∆t2

4
˙f(n) + O(∆t2) + O(∆t3) + O(∆t4) = O(∆t2)

Assuming the norms of matricesC andK are bounded (which is ensured by correct spacial discretizaton), we have
Theorem 1:The least-squares finite element method with trapezium rulefor temporal discretion is of second

order accurate in time for the first order partial differential electromagnetic system.

I. The minimum time step

It is well known that a too large time step should be avoided inorder to obtain an accurate numerical solution.
We shall show that too small time step should be avoided too. At this step of analysis, we shall consider the space
discrete error as well. Since we used hybrid linear finite elements to approximate the electromagnetic field strength,
the space discrete error isO(h2); that is:

{
Cu̇exact + Kuexact − fexact = O(h2)
Wuexact = O(h2)

(28)

uexact is the exact solution,u(n) is the finite element approximation. We my write out the totalresidual as:

r(n + 1) = [(CH +
∆t

2
KH)(C +

∆t

2
K) + W HW ]u(n + 1)exact

− [(CH +
∆t

2
KH)(C − ∆t

2
K) + W T W ]u(n)exact

− (CH +
∆

2
KH)

(f(n + 1)exact + f(n)exact + O(h2))

2
∆t

(29)

Expanding theu(n + 1)exact andf(n + 1)exact with Taylor series about the time pointn∆t and using Eq.(28), we
obtain:

r(n + 1) =
∆t2

2
CHK ˙u(n)exact +

∆t3

4
KHK ˙u(n)exact −

∆t2

2
CH ˙f(n)exact

+ O(∆t2) + O(h2) + ∆tO(h2) + ∆t2O(h2)

= O(∆t2) + O(h2) + ∆tO(h2) (30)

in which the second order terms dominate, so we only have to study the second order termsO(∆t2) andO(h2),
where O(h2) only depends on the problem configuration, the mesh and the type of finite elements. After the
system is spacial discretized, theO(h2) term is fixed for every field quantity. It is obvious that, we can decrease
∆t to improve the total accuracy until theO(∆t2) is too small and the error termO(h2), which represents spacial
discretization error, dominates the total error; then, further decreasing∆t would not improve the accuracy. In some
circumstance, decreasing∆t beyond certain minimum time step would even decrease accuracy, and cost more
computation time. For a dedicated analysis on the minimum time step, we refer to [16].
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J. The algebraic linear system and iterative solution methods

After the spatial and the temporal dicretization, a linear system of algebraic equations is to be solved. In view
of very large system matrices are involved, efficient and fast linear system solver is needed.

1) The linear system:After formulating the linear system, we have the recursive update formula:

A2ui = −A1ui−1 + Gi (31)

whereui−1 collects the solution of the previous time instance,ui =
[

Hi Ei

]H
collects the solution of the

current time instance. collects the source terms and boundary terms.u0 collects the initial field strength. Due to
the least-squares formulation,A2 is symmetric positive definite. In fact, one of the main appealing features of the
least-squares method is that it always leads to the solutionof a symmetric positive definite system.

2) The preconditioned CG-like method:The symmetric positive definite system can be solved with anyprecon-
ditioned Krylov space iterative solution method. Good preconditioners are needed in iterative solution methods.
The preconditioner we used is the incomplete Cholesky factorization (IC). The incomplete Cholesky factorization
with dropping threshold10−3 (IC(10−3)) works very generally and improves iterative convergence alot. However,
direct application ofIC(10−3) on the matrixA2 would introduce a lot of fill-ins to the incomplete Cholesky factor.
Applying the approximate symmetric minimum degree ordering [2] on the matrixA2 will reduce the fill-ins of the
incomplete Cholesky factor significantly. Then preconditioned Krylov space iterative solvers can be used to solve
the symmetric positive definite matrix. The solution methodnormally takes less than 10 iterations to reach accuracy
10−6. Fewer iterations are needed if the solution of the previoustime instance is taken as the initial guess of the
current time instance.

VII. N UMERICAL EXPERIMENTS

In this section, our method will be tested with several 2D electromagnetic problems which are difficult to solve
for other methods. The computed result will be compared withanalytic solutions.

A. Four domain problem

We test our method on a (very rare) example of a situation where at the same time there exists a theoretical
solution and the physical set up contains high contrasting regions. The theoretical solution is a ’steady state’ solution
at a single frequency, containing a source term that continuously injects current. Since we look for a time-domain
solution, we use the steady solution att = 0 as initial state, and then start integrating from there in the time domain.
Our solution should then follow the actual theoretical steady state solution faithfully. We show that the solution
stays stable and the error divergence of our method is much lower than with the classical nodal method using the
same coarsely discretized mesh. The configuration is a square domainΩ = {0 ≤ x ≤ 1, 0 ≤ y ≤ 1} consisting of
four sub-domainsΩi, {i = 1, 2, 3, 4} with different medium properties (See Table I). Let

h(t) =
σm

(σm)2 + µ2ω2
cos(ωt) +

µω

(σm)2 + µ2ω2
sin(ωt)

g(h) = σe cos(ωt) − ǫω sin(ωt)

The source density distributions is given by:

J imp
z = [−2π2h(t) − g(t)] sin(πx) sin(πy) (32)

Kimp
x = 0 (33)

Kimp
y = 0 (34)

The exact field strengths are:

Ez = sin(πx) sin(πy) cos(ωt) (35)

Hx = −πh(t) sin(πx) cos(πy) (36)

Hy = πh(t) cos(πx) sin(πy) (37)

The angular frequencyω is chosen to beπ × 109rad/s. The same test configuration in the frequency domain was
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TABLE I
CONFIGURATION OF THE FOUR SUB-DOMAINS

Ωi Definition of sub-domains µr σm ǫr σe

Ω1 0 ≤ x < 0.5 0 ≤ y < 0.5 1.25 0 1.0 0
Ω2 0.5 ≤ x ≤ 1 0 ≤ y < 0.5 2.5 0 1.0 0
Ω3 0 ≤ x < 0.5 0.5 ≤ y ≤ 1 1 0 1.0 0
Ω4 0.5 ≤ x ≤ 1 0.5 ≤ y ≤ 1 1000 0 1.0 0

0 1 2 3 4 5 6
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Root Mean Square Error Vs Time

 

 

RMSE(H) computed with nodal elements
RMSE(E) computed with nodal elements
RMSE(H) computed with mixed elements
RMSE(E) computed with mixed elements

Fig. 6. The root mean square error in the electric field strength (E) and the magnetic field strength (H) in Ω × [0, T ]. 100 time steps
have been computed and plotted (δt = 5.5 × 10−11s). The RMSE Vs time plot of the electromagnetic field strengths computed with field
integrated method based hybrid linear finite elements indicates that the method is accurate and stable.

used by Jorna in [8]. Let the Root Mean Square Error for the field strengthF in Ω at time t be:

RMSE(F, t) = (

∫
Ω |F (r, t) − Fexact(r, t)|2∫

Ω |maxt∈[0,T ] Fexact(r, t)|2
)

1

2 × 100 (38)

With an interface conforming mesh (consists of 289 points and 512 triangular elements) and the exact field strengths
at t = 0 be the initial value, theRMSEs in Ω are plotted in Fig. 6. Note that allRMSEs start with0 at t = 0
because the exact solution is taken as the initial value. Experiments have shown that the field strengths computed
with mixed elements stay stable and reasonably accurate forthis coarse mesh; while the field strengths computed
with nodal elements along are unstable and inaccurate. Notethat: µr = 1000 in Ω4, since the mesh we used is
not fine, any method would produce large numerical errors inΩ4. However, with our method, the error inΩ4 does
not contaminate the numerical solutions in other regions. One snapshot of the field strength computed with hybrid
finite elements is shown in Fig. 7.

B. Homogeneous configuration

We test our method on a time domain example where analytic solution exists. The configuration is a square
domainΩ = {0 ≤ x ≤ 1, 0 ≤ y ≤ 1} consisting of vaccum (ǫr = 1, µr = 1, σe = 0, σm = 0). The computational
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Fig. 7. The snapshot of the electric and magnetic field strengths att = 1.667 × 10−10(s) computed with the least-squares field integrated
method based on hybrid linear finite elements. The upper right sub-domain isΩ4 (µr = 1000). Errors inΩ4 do not contaminate the solutions
in other regions.

domain is surrounded by PEC boundary. The source densities are given by:

J imp
z = A sin(ωt)δ(x − 0.5)δ(y − 0.5) (39)

Kimp
x = 0 (40)

Kimp
y = 0 (41)

Whereω = 2πf , the frequencyf is 1GHZ, the wave lengthλ = c0/f = 0.3m, A = 1000. Assuming the interesting
time interval is short enough such that effect of the boundaries does not affect the solution, the analytic solution
for electric field strength is known in closed form as:

Ez(x, y, t) =

{
0, t < T

−µ0

2π

∫ t
τ=T

∂tJ
imp
z (t−τ)√
τ2−T 2

dτ, t > T
(42)

To deal with the singularity atτ = T , let u = T cosh(τ), electric field strength can be written as:

Ez(x, y, t) =

{
0, t < T

−µ0

2π

∫ acosht

T

u=0 Aω sin(ωt − ωT cosh(u))du, t > T
(43)

whereT =
√

(x − 0.5)2 + (y − 0.5)2/c0 is the arrival time for the wave to travel from the source location to the
observation location. In our finite element approximation,the spacial delta function is approximated with linear
finite element approximation. Therefore, the analytic solution will have to be weighted over that domain. We pick
the observation point(x, y) = (0.6, 0.5) and compared the computed solution on this point with the analytic solution
in the time domain. The solutions computed with different mesh size and time step size are plotted in time domain
in Fig.8 Snapshot of the electric field strength are shown in Fig.9. We can see that these simulation solutions agree
with the exact solution very well (except the first few time steps). Consequently, we can say we have a good
solution, stable for a mesh size close toλ/5.

C. High conductivity configuration

We test our method on a more realistic example where high contrasts exist. We use zero vector as the initial
state, and then start integrating from there in the time domain. The configuration is a square domainΩ = {0 ≤
x ≤ 1, 0 ≤ y ≤ 1} consisting of three sub-domainsΩi, {i = 1, 2, 3} with different medium properties (See Table
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FIM(h = λ / 5, δ t =0.1/f)
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Fig. 8. The electric field strength on observation point(0.6, 0.5) in time domain, analytic solution and the computed solutions with
h1 = λ/5, h2 = λ/10 and δt1 = 1

10f
≈ 0.1ns, δt2 = 1

20f
≈ 0.05ns, δt3 = 1

30f
≈ 0.033ns. The analytic solution is weighted over the

discrete 2D delta function.

Fig. 9. The snapshots of the electric field strengths att1 = 1.23ns, t2 = 2.17ns, t3 = 2.47ns computed with the least-squares field
integrated method.
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Fig. 10. The configuration of the third experiment

TABLE II
CONFIGURATION OF THE THIRD EXPERIMENT

Ωi Definition of sub-domains µr σm ǫr σe

Ω1 0 ≤ x < 1 0 ≤ y < 0.3 1 0 2 0
Ω2 0.4 ≤ x ≤ 0.6 0.3 ≤ y < 0.4 1 0 1 107

Ω3 Ω − Ω1 − Ω2 1 0 1 0

II and Fig. 10). The computational domain is surrounded by PEC boundary. The source densities are given by:

J imp
z = −χ(t)

√
2θe(t − t0) exp[−θ(t − t0)

2]δ(x − 0.5)δ(y − 0.5) (44)

Kimp
x = 0 (45)

Kimp
y = 0 (46)

Whereχ(t) is the heaviside step function, the peak frequencyfpeak is 1GHZ, t0 = 2ns, θ = 2π2f2
peak. the

simulation is done in time domain. As always, edge- finite elements are used on interfaces only, nodal finite
elements are used elsewhere. Snapshots of electric field strength computed with hybrid finite elements are shown
in Fig. 11.

Fig. 11. The snapshot of electric field strength att1 = 3ns,t2 = 3.3ns, t3 = 3.7ns computed withh = λ/10, δt = 0.033ns
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VIII. T IME DOMAIN ANALYSIS WITH UNIAXIAL PERFECTLY MATCHED LAYERS

For electromagnetic wave computation, it is important to beable to model the unbounded problems where the
computational domain extends to infinity. In this paper, we adopt the analysis and perfected matched layers discussed
by A. T. de hoop et al in [1].

A. Theory

Let’s now first review the second order wave equation for electric field strength (assuming not lossless media
and smooth changing isotropic, time-invariant, instantlyreacting medium):

∇×∇× E + c−2∂2
t E = Qi (47)

whereQi summarizes all source terms (electric current and magneticcurrent). Knowing that:

∇×∇× E = ∇(∇ · E) −∇2E (48)

Assuming that no charges presents in the domain, we have∇ ·E = 0 and the second order Maxwell’s equation is
equivalent to the following wave equation:

∇2E − c−2∂2
t E = −Qi (49)

Assuming the computational domainD ∪ ∂D is embedded by infinite source free domainD∞, That is:

∇2E − c−2∂2
t E = 0, in D∞ (50)

Qi ⊂ D (51)

The electric field in the computational domain can be computed analytically using the Green’s function:

E(r, t) =

∫

D
G(r, r ′, t) ∗(t) [Qi(r ′, t) + Qs(r ′, t)]dV (r ′) (52)

in which

G(r, r ′, t) =
δ(t − R/c)

4πR
, R = ‖r − r ′‖ (53)

wherer = [x, y, z] and the origin point is defined insideD, ‖v‖ computes the 2-norm of vectorv. The time domain
solution can be transformed into frequency domain by Laplace transformation. Then solution:

Ê(r, s) =

∫

D
Ĝ(r, r ′, s)[Q̂i(r ′, s) + Q̂s(r ′, s)]dV (r ′) (54)

in which

Ĝ(r, r ′, s) =
exp(−sR/c)

4πR
, R = ‖r − r ′‖ (55)

solves the equation:

∇2E − c−2∂2
t E = −Qi (56)

Knowing that, the objective is to construct a solution in domain D ∪ Dpml which equalsÊ(r, s) in D ∪ ∂D and
takes whatever value in domainDpml. Coordinate stretching can do the job, let:

X̂ =

∫ x

0
χx(ξ, s)dξ, Ŷ =

∫ y

0
χy(ξ, s)dξ, Ẑ =

∫ z

0
χz(ξ, s)dξ (57)

∂
X̂

= χx(x, s)−1∂x, ∂
Ŷ

= χy(x, s)−1∂y, ∂
Ẑ

= χz(x, s)−1∂z (58)

constructχx, χy andχz such thatχx = χy = χz = 1 in domainD. Let r̂ = [X̂, Ŷ , Ẑ], r̂ = r in domainD; the
Green’s function:

G̃(r̂, r̂ ′, s) =
exp(−sR̂/c)

4πR̂
, R̂ = ‖r̂ − r̂ ′‖ (59)
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would equal toĜ(r, r ′, s) in domainD ∪ ∂D.

Ẽ(r̂, s) =

∫

D
G̃(r̂, r̂ ′, s)[Q̂i(r̂ ′, s) + Q̂s(r̂ ′, s)]dV (r ′) (60)

shall solve the equation:

∇̂2Ẽ − c−2s2Ẽ = −Q̂i where∇̂2 = ∂2
X̂

+ ∂2
Ŷ

+ ∂2
Ẑ

(61)

which is equivalent to the un-stretched wave equation in domain D. Then we need to chooseχx(ξ, s), χy(ξ, s),
χz(ξ, s) such thatẼ(r̂, s) is attenuated or delayed inDpml, such that the outgoing EM wave never comes back
to the computational domain. So long as the wave in PerfectlyMatched LayersDpml are heavily attenuated or
delayed, coordinate stretching can be performed without changing the electromagnetic waves in the computational
domainD ∪ ∂D.

B. Implementation of UPML in 2D problems

In this section, we are going to derive the 2D UPML for Maxwell’s equations by stretching the coordinate.
The resulted PML is equivalent to Perfectly Matched Uniaxial Medium by Sacks et al [17]. Let’s first review the
2D(TM) Maxwell’s equations in frequency domain (for simplicity, we omit sources and conductivity):

∂xHy − ∂yHx = sεEz (62)

∂yEz = −sµHx (63)

∂xEz = sµHy (64)

Stretch the coordinate as:

X̂ =

∫ x

0
χx(ξ, s)dξ (65)

Ŷ =

∫ y

0
χy(ξ, s)dξ (66)

(67)

Then

∂
X̂

= χx(x, s)−1∂x (68)

∂
Ŷ

= χy(x, s)−1∂y (69)

(70)

Replace the original coordinate with the stretched ones, weget:

χx(x, s)−1∂xĤy − χy(y, s)−1∂yĤx = sεÊz (71)

χx(y, s)−1∂yÊz = −sµĤx (72)

χx(x, s)−1∂xÊz = sµĤy (73)

Ĥ andÊ be the field strength on the stretched coordinate. SayH̃x = χx(x, s)Ĥx, H̃y = χy(y, s)Ĥy, note that they
are still equal to the original field in the computational domain. Then we have:

∂xH̃y − ∂yH̃x = sεχx(x, s)χy(y, s)Êz (74)

∂yÊz = −sµχx(x, s)−1χy(y, s)H̃x (75)

∂xÊz = sµχx(x, s)χy(y, s)−1H̃y (76)

Direct transformation from frequency domain to time domainwould result in convolution in time domain. To
avoiding this, We introduce more unknowns:

B̃x = χx(x, s)−1χy(y, s)µH̃x (77)

B̃y = χx(x, s)χy(y, s)−1µH̃y (78)

D̂z = εχy(y, s)Êz (79)
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therefore the original equations become:

∂xH̃y − ∂yH̃x = sχx(x, s)D̂z (80)

∂yÊz = −sB̃x (81)

∂xÊz = sB̃y (82)

B̃x = χx(x, s)−1χy(y, s)µH̃x (83)

B̃y = χx(x, s)χy(y, s)−1µH̃y (84)

D̂z = εχy(y, s)Êz (85)

Let χx(x, s) = 1 + σx

sε0

, χy(y, s) = 1 + σy

sε0

which introduce attenuation in the Perfectly Matched Layers, and
transform the equations form frequency domain to the time domain:

∂xH̃y − ∂yH̃x = (∂t + σx/ε0)D̂z (86)

∂yÊz = −∂tB̃x (87)

∂xÊz = ∂tB̃y (88)

(ε0∂t + σx)B̃x = µ(ε0∂t + σy)H̃x (89)

(ε0∂t + σy)B̃y = µ(ε0∂t + σx)H̃y (90)

∂tD̂z = ε(∂t + σy/ε0)Êz (91)

Trapezoidal discretization in time domain would need all four types of unknowns (H,B,E,D). Applying leap-frog
schema in time greatly reduces the number of unknowns. And wediscretize space with discrete field integrated
equations,B and H locate on half time level, whileD and E locate on whole time level, then we have the
successive update formula as follows:

∫

S
B(n + 3/2) = −∆t

∮

∂S
E(n + 1)dl

+

∫

S
B(n + 1/2) − ∆t

∫

S
K(n + 1)ds (92)

Hx(n + 3/2) =
2ε0 − σy∆t

2ε0 + σy∆t
Hx(n + 1/2)

+
1

µ(2ε0 + σy∆t)
[(2ε0 + σx∆t)Bx(n + 3/2) − (2ε0 − σx∆t)Bx(n + 1/2)] (93)

Hy(n + 3/2) =
2ε0 − σx∆t

2ε0 + σx∆t
Hy(n + 1/2)

+
1

µ(2ε0 + σx∆t)
[(2ε0 + σy∆t)By(n + 3/2) − (2ε0 − σy∆t)By(n + 1/2)] (94)

∫

S
[1 +

σx∆t

2ε
]Dz(n + 2)ds = ∆t

∮

∂S
H(n + 3/2)dl

+

∫

S
[1 − σx∆t

2ε0
]Dz(n + 1)ds −

∫

S
Jz(n + 3/2)ds (95)

Ez(n + 2) =
2ε − ∆tσy

2ε0 + ∆tσy
Ez(n + 1)

+
1

(2ε0 + ∆tσy)ε
[2ε0Dz(n + 2) − 2ε0Dz(n + 1)] (96)

spacial discretization are done with combined edge- nodal-finite elements. Note that for this schema, divergence
free condition need to be applied explicitly, or the method will be unconditionally unstable. Also, after the leap-frog
schema is conditionally stable but second order accurate. The chosen sampling frequency must be less than one-half
of the highest resonant frequency of the mesh (see [15]).σx andσy are PML parameters that control the absorption
ratio. Never too large nor too small should it be. To avoid spurious reflections, it should be increased smoothly
from 0 on the boundary of computational domain and toσmax on the outer boundary of PML layer where PEC or
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Fig. 12. The electric field strength on observation point(0.6, 0.5) and(0.8, 0.5) in the time domain computated on a mesh consisting 545
points. When needed, the Perfectly Matched Layers presentsin DPML = {0 ≤ x ≤ 0.1∪ 0.9 ≤ x ≤ 1, 0 ≤ y ≤ 0.1∪ 0.9 ≤ y ≤ 1} which
is of three elements thick. The maximumσmax = 0.4257, which is computed with Eq. 97. The optimum configuration of the UPML is out
of the scope of this paper, please refer to [14] for more details .

PMC can be used to truncate the whole domain. Third order or fourth order polynomials is normally used,σmax

can be chosen heuristically according to the following formula:

σopt = −(m + 1) ln[R(0)]

2ηd
(97)

wherem is the order of the polynomial used;R(0), the reflection ratio of normal incident wave;d, the thickness
of the PML layer;η =

√
µ/ε, the impedance. See [14] for more details. With all field quantities normalized as

shown in section VI-B,χ should be nomralized as:̂χ = 1 + σ̂ and σ̂ = σL
√

µ0/ε0

C. Numerical experiments with UPML

We test our method with uniaxial Perfectly Matched Layers ona time domain example where analytic solution
exists. The configuration is a square domainΩ = {0.1 ≤ x ≤ 0.9, 0.1 ≤ y ≤ 0.9} consisting of vaccum (ǫr =
1, µr = 1, σe = 0, σm = 0). The computational domain is surrounded by PMLsDPML = {0 ≤ x ≤ 0.1 ∪ 0.9 ≤
x ≤ 1, 0 ≤ y ≤ 0.1 ∪ 0.9 ≤ y ≤ 1}. The PML loss profile is graded smoothly from 0 toσmax = 0.4257 by third
order polynomials. The source densities are given by:

J imp
z = −χ(t)

√
2θe(t − t0) exp[−θ(t − t0)

2]δ(x − 0.5)δ(y − 0.5) (98)

Kimp
x = 0 (99)

Kimp
y = 0 (100)

Where χ(t) is the heaviside step function, the peak frequencyfpeak is 1GHZ, t0 = 2ns, θ = 2π2f2
peak. We

pick the observation points(0.6, 0.5) and (0.8, 0.5) and choose the observation time interval long enough such
that reflection (if any) can be well observed. The solutions computed with and without PMLs are plotted in time
domain in Fig.12.

IX. CONCLUSION

The least-squares field integrated method based on hybrid linear finite elements holds considerable promise to
model electromagnetic effects in integrated circuits, where high contrasts between different types of materials is
the rule and complex structures are present.
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