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Introduction

The technological progress in many application areas ( telecommunication, robotics and 
others )  is actuated by the development of  the electronic components and optic.  The 
increasing of the performance is a result of  a higher complexity of integrated systems and 
smaller  dimensions  of  electronic  and  optic  devices.  Both  are  connected  with  new 
diffculties for the design of circuits.

Circuit  design  consists  usually  of several  steps:  process simulation, device simulation, 
compact modeling for semiconductor devices, extraction and         generation of model 
parameters,  circuit  simulation.  The  way over  a  compact  modeling of  devices  (macro-
modeling)  was  advantageous up to  now since  one  could simulate  circuits  without  an 
expensive  device  simulation.  Thus,  a  simulation  of  integrated  circuits  was enabled  in 
general.  Nowadays,  however,  the  performance of  high  frequency devices depends not 
only on their geometrical dimensions. It  is significantly influenced by the surrounding 
circuitry. This requires additional (time consuming) iterations during the circuit design for 
the extraction and generation of model parameters. 

Furthermore,  high  frequency parts  of  a  circuit  have  to  be  modeled  with  a  very  high 
precision  for  a  reliable  evaluation  of  the  circuit  function.  Consequently,  for  complex 
circuits with high frequency devices,  it  is recommended to  combine circuit simulation 
directly with a device simulation of elements of the high frequency part. This results in 
coupled systems of differential-algebraic equations.

In this document, we follow an approach that includes the device model equations into the 
network equation system directly. Based on a detailed analysis of network and device 
modeling, we elaborate information about the structure of the coupled circuit and device 
systems.

Furthermore,  we  present  a  treatment  of  the  coupled  systems  as  differential  algebraic 
systems in infinite-dimensional Hilbert spaces. Such systems are also called singular or 
degenerate abstract differential equations.

This work is divided into 2 parts. The first one is devoted to a detailed network analysis - 
network  elements  and  topological  properties  of  the  network  are  discussed  from  a 
mathematical point of view.

The second part deals with modeling of semiconductor devices. After a short discussion of 
different models on different levels, we consider the drift diffusion equations. Particular 
care is taken to the boundary conditions since they play an important role for the coupling 
between circuit and device equations.

The Appendix  collects symbols and physical constants used in this thesis.
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1.  Network Modeling

The numerical simulation of electric networks is closely related to the network modeling. 
Circuit models have to meet two contradicting demands:

- they have to describe the physical behavior of a circuit as correct as possible
- they should be simple enough to keep computing time reasonably small

A well established approach meeting both demands to a certain extent is the description of the 
network by a graph with branches and nodes.  Branch currents,  branch voltages and node 
potentials are introduced as variables. The node potentials are defined as voltages with respect 
to one reference node, usually the mass node.

The physical behavior of each network element is modeled by a relation between its branch 
currents j and its branch voltages v. Network elements fully described by a relation between a 
single  branch  current  and  a  single  branch  voltage  are  called  one-port  or  two-terminal 
elements.  One  port  rejects  one  branch,  one  terminal  reflects  one  end  of  a  branch. 
Correspondingly,  the other elements are  called multi-port  or multi-terminal elements.  The 
describing current-voltage relations are called characteristic equations.

In order to complete the network model, the topology of the elements has to be taken into 
account.  Assuming  the  electrical  connections  between  the  circuit  elements  to  be  ideally 
conducting and the nodes to be ideal and concentrated,  the topology can be described by 
Kirchhoff's laws.
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   1.1  Network Elements

The analysis and design of circuits requires an approximation of real elements by appropriate 
models. The level of the models ranges from simple algebraic equations, over ordinary and 
partial  differential  equations  to  Boltzmann  and  Schroedinger  equations  depending on  the 
effects  to  be  described.  Due  to  the  high  number of  network elements  (up to  millions of 
elements) belonging to one circuit one is restricted to relatively simple models. In order to 
describe the physics as good as possible, so called compact models represent the first choice 
in network simulation. Complex elements such as transistors are modeled by small circuits 
containing basic network elements described by algebraic and ordinary dfferential equations 
only.

The  basic  network  elements  are  ideal  resistors,  ideal  condensers,  ideal  coils  and  ideal 
batteries.  In  order  to  express  that  we deal  with ideal  elements we use the terms resistor, 
capacitor, inductor, and voltage source, respectively. 

Furthermore, we shall use current sources that play an important role for the description of 
more complex elements such as transistors.

The characteristic equation of a resistor may be described as

v(t) = r(j(t), t) or  j(t) = g(v(t), t)                                            (1.1)
  

where  j(t) reflects the current and  v(t)  the voltage  through the resistor at  the time  t.  The 
functions  r and  g,  respectively,  can be  linear  and nonlinear.  Typical  examples  are  Ohms 
resistors and diodes. In the first case, the functions r and g are linear and time-independent. In 
the  second case,  the  function  g reflects  an  exponential  function  with  respect  to  the  first 
argument.

In  case of multiterminal elements  j and  v may form vector valued functions of time. An 
element with n terminals is uniquely determined by the relation between n - 1 branch voltages 
and n - 1 branch currents. Therefore, one chooses often one reference terminal and considers 
the branches between the reference terminal and all other terminals.

Capacitors store energy in their electric fields. It’s charge q(t) may be expressed by

q(t) = qC (v(t), t).

The function qC is usually monotone. Due to the definition of the current we get the voltage-
current characteristics

j(t) =  
dt

ttvdqC )),((
.

As described for resistors, the currents, charges and voltages may be vector valued functions 
in case of multi-terminal elements. Typical examples are the ideal condenser and the varactor 
diode. Transistor modeling requires often nonlinear multi-terminal capacitors.
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Inductors store energies in their magnetic fields. The flux φ (t) is represented by

φ (t) = φ L (j(t), t).

Regarding the definition of voltage, we arrive at

v(t) = 
dt

ttjd L )),((φ
.

Also in this case, the currents, fluxes and voltages may be vector valued functions. Most of 
coils  have  a  nonlinear  current-flux  characteristics.  One  can  approximate  them  by  linear 
functions only in  a  small  current  range.  In  case  of  large  currents,  the  flux growths  sub-
linearly.

Independent voltage and current sources are distinguished by the fact that the voltage and the 
current are given by

v(t) = vs(t)   and    j(t) = si (t), respectively.

If we have 

v(t) = vs(j(t))           or      j(t) = si ( ĵ  (t))

then  the  sources  are  called  current  controlled.  Again,  v,  j and  ĵ  may be  vector  valued 

functions. Here, the branches corresponding to j are different from those corresponding to ĵ . 
In case of

v(t) = vs( v̂ (t))         or        j(t) = si (v(t)),

the sources are called voltage controlled. Here, the branches corresponding to v are different 
from those corresponding to v̂ .

In general, we have

v(t) = vs(t,j(t), v̂ (t))                     for voltage sources

and

j(t) = si (t, ĵ  (t), v(t))                     for current sources.

1.1   Network Topology
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Assuming  that  quantum  mechanical  interactions  between  the  network  elements  can  be 
neglected, the electrical behavior of the network is described by Maxwell's equations which 
imply Kirchhff's laws.

Considering one node  with branch currents  j1,  ...,  jn entering this  node  we may describe 
Kirchhoff's current law (KCL) as

,0
1

=∑
=

n

k
kj                                                             (1.2)

that means, the sum of all branch currents entering a node equals zero.

If we consider a loop with the branch voltages v1, ..., vn , then we may formulate Kirchhoff's 
voltage law (KVL) as

,0
1

=∑
=

n

k
kv

that means, the sum of all branch voltages in a loop equals zero. Using Kirchhoff's laws, one 
can describe the network topology in an elegant way by the (reduced) incidence matrix A = 
(aij) that describes the relation between all nodes (except the mass node) and all branches of 
the network. It is defined as

aij =  





−
0

1

1

     
where:      1- if the branch j leaves the node i,
              - 1 - if the branch j enters the node i,
and           0 - else.

Let a connected network with  n nodes and  b branches be given. If  j = (j1, j2,…, jb)T is the 
vector of all branch currents of the circuit, then Kirchhoff's current law implies

Aj = 0.                                                              (1.3)

Consequently, the maximal number of independent node equations describing the network is 
given by (1.3).

The incidence matrix allows, additionally, a simple description of the relation between node 
potentials and branch voltages of the network. If v = (v1, v2, …, vb)T is the vector of all branch 
voltages and e = (e1, e2,…, en-1 )T denotes the vector of all node potentials, then the relation

v = ATe                                                             (1.4)

8



is satisfied. Each individual equation of (1.4) corresponds to one branch voltage. If we apply 
Kirchhoff's voltage law to a loop containing both nodes of the considered branch and the mass 
node, we get (1.4) directly.

1.2   The Modified Nodal Analysis

Let a connected electrical  network be given.  The nodal  analysis  is based on the network 
equations (1.3)

                                                                  Aj = 0                                                               (1.5)

and (1.4)

                                                 v = ATe                                                              (1.6)

as well as the characteristic equations of all network elements. As described in the section 
before, they may be written as

                                  f 






tjv
dt

tjd

dt

tvdq LC ,,,
),(

,
),( φ

 = 0.                                      (1.7)

The system (1.5)-(1.7) is a  differential  algebraic  system, that  means a  coupled system of 
differential and algebraic equations in the network variables j, v and e. The dimension of this 
system equals 2b+n-1. The approach leading to this system is called sparse tableau analysis.

The so called modified nodal analysis (MNA) requires a much smaller number of unknowns. 
In this case, one replaces the branch currents of all current defining elements in (1.5) by their 
characteristic  equations,  and  all  branch  voltages  by  node  voltages  using  (1.6).  It  is  not 
difficult to see, that the resulting system represents a differential-algebraic equation.

In order to design an effective solution scheme, it is important to look at the structure of the 
equations. Other physical systems, like multibody systems, in mechanics, can be described by 
differential-algebraic equations, which are Euler equations of a variational principle (see e.g. 
[ESF98,  RR99]).  This  gives  them  a  structure,  which  is  exploited  by  modern  numerical 
schemes.  In  electrical  network  simulation,  the  structure  is  not  so  evident.   Therefore, 
simulation methods could not be based on a particular structure until a few years ago. Our 
detailed  investigations  in  [Tis99]  lead  to  a  structure  based  description  of  the  network 
equations. It has been extended for a more general class of networks in [ET00, EFM+03].

We will explain this structure here for networks containing resistors, capacitors, inductors and 
independent sources. Since we want to present the essential idea we will neglect the case of 
controlled sources.  The  treatment  of  controlled sources  requires  a  lot  of  technical  details 
which are presented in [ET00].

9



For the vector  jR  of branch currents and the vector  vR of branch voltages of all resistors, we 
obtain

jR = g~ (vR, t).

Here, the function g~  represents the composition of the functions g for each resistor. Since we 
are not interested in the individual functions  g anymore, we will use  g instead of  g~  in the 
following, that means jR = g (vR, t). Analogously, for the branch currents jC/jL and the branch 
voltages vC/vL of all capacitors/inductors, we have

jC = 
dt

tvdq CC ),(
,             vL = 

dt

tjd LL ),(φ
 .

Finally we get

vV = vs(t) and jI = is(t)

for the branch voltages  vV  of all  voltage  sources and the  branch currents  jI of  all  current 
sources.

The essential idea for getting structure information is a numbering of the network branches in 
such a way that the incidence matrix forms a block matrix with blocks describing the different 
types of network elements. The blocks are then given as follows:

A = (AR,AC,AL,AV ,AI ),                                                 (1.8)

where the index stands for resistive, capacitive, inductive, voltage source and current source 
branches, respectively. Replacing the branch currents of all current defining elements in (1.5) 
by their characteristic equations, and all branch voltages by node voltages using (1.6), we 
obtain the system

AC

),(),(
),(

tiAjAjAteAgA
dt

teAdq
sIVVLL

T
RR

T
CC −=+++

                                                                          ,0
),( =− eA

dt

tjd T
L

LLφ

                                                                                              )(tveA s
T
V =

with the unknowns e(t), jL(t), and jV (t).

Consequently,  the  classical  modified  nodal  approach  results  in  a  differential  algebraic 
equation system of the form
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),(),( teA
t

q
A

dt

de
AteACA T

C
C

C
T
C

T
CC ∂

∂
+

                                           ),(),( tiAjAjAteAA sIVVLL
T
RRg −=+++                                   (1.9)

                                ,0),(),( =−
∂

∂+ eAtj
tdt

dj
tjL T

LL
LL

L

φ
                                           (1.10)

                                                                      )(tvA s
T
V =                                       (1.11)

if the functions qC(v, t) and φ L(j, t) are sufficiently smooth and

),,(:),( tv
v

q
tvC C

∂
∂

=                ).,(:),( tj
j

tjL L

∂
∂

=
φ

Denoting the number of nodes by n, the number of inductive branches by nL and the number 
of voltage source branches by nV , the dimension of the system is n - 1 + nL + nV .

In the charge oriented MNA approach, one introduces additionally charges q and fluxes φ  as 
unknown variables. This implies the equivalent system

                       ),(),( tiAjAjAteAgA
dt

dq
A sIVVLL

T
RRC −=+++                           (1.12)

                                                           ,0=− eA
dt

d T
L

φ
                                     (1.13) 

                                                                  )(tveA s
T
V =                                  (1.14)

                                                                     ),,( teAqq T
CC=                        (1.15)

                                                                     ).,( tjLLφφ =                           (1.16)

At a first glance, the charge oriented system (1.12)-(1.16) seems to be disadvantageous since 
its dimension is significantly larger than the dimension of system (1.9)-(1.11). However it is, 
for several reasons, the main approach used in circuit simulators. For a detailed discussion of 
these reasons we refer to [GF99a, Gun01a]. We only want to mention a few aspects here. 
Replacement  circuit  models  for  semiconductor  elements  are  often  formulated  by  (1.15)-
(1.16). This way charge and flux conservation is guaranteed automatically.

 Numerical methods applied to system (1.9)-(1.11) require the differentiation of the functions 
qC and φ L. Solving the resulting system of nonlinear equations requires the second derivatives 
of  these  functions,  i.e.,  we  need  more  smoothness.  This  plays  a  significant  role  for  the 
numerical  solution  since  models  are  usually  not  twice  differentiable.  Additionally,  it  is 
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computationally more expensive. Furthermore, charge and flux conservation is only fulfilled 
approximately.

 Finally, the simple form of the equations (1.15) and (1.16) involves only function evaluations 
for the determination of q and φ . Consequently, from the computational point of view, the 
dimension of the charge oriented system equals the dimension of the classical system. In fact, 
one has to apply a numerical method to the system

                  ),(),(
),(

tiAjAjAteAgA
dt

teAdq
A sIVVLL

T
RR

T
CC

C −=+++                  (1.17)

                                                         ,0
),(

=− eA
dt

tjd T
L

LLφ
                            (1.18)

                                                                          )(tveA s
T
V =                         (1.19)

directly (without the differentiation done in (1.9)-(1.11)). Note, that the system (1.17)-(1.19) 
represents a DAE with a proper stated leading term [Mar02a, Mar02b] if the matrices C(v, t) 
and L(j, t) are positive definite for all voltages v, currents j and time points t. These conditions 
seem to be natural from the physical point of view. For two-terminal capacitors, this means 
that a positive change of the voltage yields a current in forward direction. The current flows in 
reverse direction if the voltage change is negative.

   2.   Semiconductor Device
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         Modeling

Considering the literature, one finds an enormous amount of books and papers dealing with 
semiconductor  device  modeling.  We  refer  here  only  to  [Sel84,  GG86,  GG89, 
MRS90,Wac91]. These contributions provide a comprehensiv overview of the topic and focus 
onto the mathematical background.

Semiconductor  device  models  describe  the  electron  transport  in  the  semiconductor.  In 
consideration  of  the  degree  of  simplification  one  distinguishes  between  quantum  level 
transport and semi-classical transport completed with balance equations. The first one yields 
the Schrödinger equation and the second one leads to the Boltzmann equation. Simplifying 
the Boltzmann equation further by the method of moments [Sch90], one obtains the so called 
energy  balance  equations  (considering  four  moments)  or  the  drift  diffusion  equations 
(considering only two moments).

From the practical point of view, the interest in semiconductor device modeling is to replace 
as much laboratory testing as possible by numerical simulation in order to minimize the costs. 
Thus,  mathematical  models  requiring  expensive  simulations  are  not  preferable.  For  most 
semiconductor  technologies,  the  drift  diffusion  equations  seem to  represent  a  reasonable 
compromise between computational efficiency and an accurate description of the underlying 
physics.

However with the increased miniaturization of semiconductor devices, one comes closer and 
closer to the limits of validity of the drift diffusion equations. The reason for this is, on one 
hand, that in ever smaller devices the free carriers can not longer be modeled as a continuum. 
On the other hand, the drift diffusion equations are derived through a limiting process where
the mean free path of a particle tends to zero. Through miniaturization this mean free path 
becomes larger  and larger  in  comparison  to  the  size  of  the  device.  In  addition,  quantum 
mechanical effects play a more and more important role in novel device structures.

Nevertheless, the drift diffusion equations remain an important tool since microscopic effects 
not described by them appear only locally. Thus, the most likely approach will be to use more 
sophisticated models only locally, and to use the drift diffusion equations in the parts of the 
device  where  they  are  sufficient  to  describe  the  physics  (usually  in  the  bulk  of  the 
semiconductor).

Therefore, we concentrate in Section 2.1 on the drift diffusion equations considered as an 
important model description for the device part in coupled network and device simulation.

Regarding the coupling between network and device simulation, the type of contacts between 
the semiconductor and the network has to be taken into account. Usually,  they consist of 
layers of metal, insulator, or other semiconductors. This implies that the boundary conditions 
for the transport equations in the bulk of the semiconductor have to be formulated in such a
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way that the physical processes at the interfaces are described appropriately.
We will discuss them in Section 2.2, but for a more detailed description we refer to [Sch90, 
Sze81].

2.1  The Drift Diffusion Model for  
           Semiconductor Devices

In this part we describe the drift diffusion model for semiconductor devices including a brief 
derivation. For a more detailed discussion see e.g. [Sel84, Sze81].

First, we introduce Ω  to be a nonempty, open and bounded domain with a regular boundary 
Ω∂=Γ  in  RR N with  1  ≤   Ν  ≤   3 such that  Ω  describes the range of the semiconductor 

inclusive its contacts.

        2.1.1  Current-Density Equations

The conductivity of semiconductors is strongly connected to the number of its free charge 
carriers.  As  charge  carriers,  we  have  to  consider  not  only  electrons  but  also  holes.  If  a 
semiconductor atom lacks one of its valence electrons, then it may attract an electron from 
another atom. This can be considered as a movement of a hole from one atom to another one. 
Correspondingly,  holes  are  considered  as  positive  charge  carriers,  whereas  electrons  are 
negative charge carriers.

As the name of the drift-diffusion model already expresses, the current in a semiconductor is 
mainly driven by drift and diffusion. The drift current is caused by an electric field E that is 
present due to the existence of free charge carriers. 

It is given by

nq nµ E                and             pq pµ E

for electrons and holes, respectively. Here, q represents the elementary charge. The variables 
n and p denote the concentrations of electrons and holes, respectively. The electron and hole 
mobilities,  nµ and  pµ are bounded, strictly positive functions depending on semiconductor 
material, doping, temperature and the electric field E.

The dffusion current is caused by a movement of charge carriers that aims to compensate 
inhomogeneous concentrations. The diffusion current is proportional to the gradient of the 
charge carrier concentration. 
More precisely, we have
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nqD grad n        and          pqD− grad p.

nD and  pD are  called  carrier  diffusivities.  In  general,  they  are  bounded,  strictly  positive 
functions depending on semiconductor material, doping and temperature.

In thermal equilibrium, the mobilities pµ , nµ and the diffusivities nD , pD  related by

nn q

kT
D µ=                and             pp q

kT
D µ=

for non-degenerate semiconductors. Here, T denotes the temperature and k is the Boltzmann 
constant. The last equations are called Einstein relations.

Since the electric field E is related to the electrostatic potential V by

E = grad− V ;                                                         (2.1)
 
we obtain for the current densities of electrons and holes

                           nJ = ngradq nµ− V + nqD grad n,                                            (2.2)

                          pJ = pgradq pµ− V PqD− grad p.                                            (2.3)

Note that  one has  to  consider  an  additional  current,  if  a  magnetic  field  is  applied to  the 
semiconductor. However, this is usually negligible for devices included in integrated circuits.

  2.1.2   Continuity Equations

The continuity equations describe particle conservation and are given by

+∂− nq t div nJ = qR , (2.4)

+∂ pq t div pJ = qR− .(2.5)

Here, R describes the generation/recombination rate. There are several physical mechanisms 
causing generation and recombination of  electrons and holes.  The  main  ones are  phonon 
transitions,  photon  transitions,  Auger  (three  particle)  transitions  and  impact  ionization. 
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Corresponding to the different mechanisms, different models have been developed in order to 
describe the generation and recombination process.
 The mostly used models are:

 Shockley-Read-Hall recombination

Optic recombination
 

),( 2
i

OPT
OPT nnpCR −=

Auger recombination

);)(( 2
i

AU
p

AU
nAU nnppCnCR −+=

and impact ionization

.
q

J

q

J
R

p

p

n

nII αα −−=

Here, in represents the intrinsic charge density. If the semiconductor is in equilibrium, then 
np is constant and in  is defined by

npni =2

The factors nτ and pτ reflect the average lifetimes of electrons and holes, respectively. The 

constants OPTC , AU
pC and  AU

nC  have to be determined by experiments. nα and  pα are the 

ionization rates for electrons and holes, respectively. They may be approximated by
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N

E
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nn
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−⋅= ∞

P

E

E crit
n

pp

β

αα exp .

with constants nα , pα , nβ , pβ , crit
nE , 

crit
pE .

If all effects are present, then one simply adds up all rates such that

.IIAUOPTRSH RRRRR +++=

   2.1.3   Poisson Equation

The transport equations (2.2)-(2.5) constitute equations for the concentrations of electrons and 
holes  ( n and  p )  as  well  as  the  densities  of  electron  and  hole  current  ( nJ and pJ ). 
Additionally,  the  existence of  these  charge  carriers  causes  an  electrical  field.  In  order  to 
obtain  a  self-consistent  formulation,  the  transport  equations  have  to  be  completed  by  an 
equation that determines this electrical field. This is given by the third Maxwell equation, 
which relates the electric field to the electric charges. 

It reads

                                              div D = e                                                                 (2.6)

where D is the electric displacement and  e is the charge density. The electric charge is the 
source of the electric displacement.

 The electric field E is related to D by

                                               D = ε E                                                                   (2.7)

with the permittivity constant ε  of the medium if the medium is homogeneous.

Inserting (2.7) and (2.1) into (2.6), we get

div ( ε−  grad V) = e
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In  a  semiconductor,  the  local  charge  is  composed  of  electrons,  holes,  donor  atoms  and 
acceptor atoms. Thus, the charge e is given by 

e = ),( −+ −+− AD NNnpq

where  q is  the  elementary  charge,   +
DN the  donor  concentration  and  −

AN  the  acceptor 
concentration. 

Finally, we arrive at the Poisson equation

                           div ( ) ).( −+ −+−=− AD NNnpqgradVε                                     (2.8)

The impurity atoms are assumed to be fixed in the semiconductor, i.e. +
DN  and +

AN  are 
independent of time and, thus, given as functions of the position. This assumption is justified 
if the impurity concentrations are sufficiently small. But it holds no longer true in case of high 
power transistors and high power diodes.

  2.1.4   Complete Drift-Diffusion Model

Summarizing the model equations (2.2), (2.3), (2.4), (2.5) and (2.8), we get the drift-diffusion 
model equations

                                     div ( ) ( ),NpnqgradV −−=ε                                                    (2.9)

                               
q

nt

1+∂−  div ,RJ n =                                                                   (2.10)

                                 
q

pt

1+∂  div RJ p −=                                                                  (2.11)

                                                    ),( ngradVgradnDqJ nnn µ−=                              (2.12)

                                                    ).( pgradVgradpDqj ppp µ−−=                           (2.13)
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The unknowns are the electrostatic potential V , the electron and hole concentrations,  n and 
p, as well as the current densities of electrons and holes, nJ and pJ . Note, that nJ and pJ  are 
given by (2.12)-(2.13). Thus, inserting (2.12) and (2.13) into (2.10) and (2.11) yields to a 
system in the primary variables V , n and p only.

The doping concentration −+ −= AD NNN :  represents a given function depending only on the 

position variable x. The sizes ε  and q are constants. The mobilities nµ  and pµ  as well as the 

diffusivities  nD  and  pD  are  bounded,  strictly  positive  functions.  They  may  depend  on 
position x (due to dependency on doping) and on the gradient of the potential grad V (due to 
dependency on the electric field E. Finally, the generation/recombination rate R may depend 
on n, p, nJ , pJ and grad V corresponding to the applied model.

The system (2.9)-(2.13) represents a system of  five coupled partial differential equations. The 
Poisson equation (2.9) is of elliptic type. Regarding the current density equations (2.12) and 
(2.13), the continuity equations (2.10) and (2.11) are of parabolic type.
 
Note  that  we  assume  a  constant  temperature.  It  is  justified  for  applications  with  low 
performance  devices.  In  case  of  high  performance  devices,  one  has  to  consider  the 
temperature T as a variable. The drift diffusion equations have to be completed by an energy 
balance  equation (see  e.g.  [Wac95,  Jun01,  AGH02]).  It  is  a  future task  to  combine such 
energy models with the network equations.

  2.2   The Boundary Conditions

Semiconductors have essentially three different types of adjoining materials.  The contacts 
between the network and the semiconductor are usually layers of metal. The second kind of 
bounding  materials  are  insulators  (e.g.  oxide).  Finally,  they  may  be  bounded  by  other 
semiconductors.  Such  semiconductor-semiconductor  interfaces  are  called  heterojunction. 
Here, we are interested in devices with one semi-conducting material only and we do not 
consider heterojunction.

The  following  sections  are  devoted  to  a  brief  explanation  of  the  boundary  conditions 
connected  with  different  types  of  interfaces.  For  a  more  detailed  description,  the  books 
[Sze81, Sel84, Sch90] are recommended.

  2.2.1   Metal-Semiconductor Contacts
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Many semiconductor devices have low resistance or rectifying contacts. The corresponding 
models are called Ohmic and Schottky contacts, respectively. They have been established in 
many device simulation programs and we want to consider such contacts here. Note that, in 
[Sch90],  a  new  model  was  presented  for  non-ideal  contacts  including  tunneling  effects 
(regarded in Ohmic contact models) as well as thermionic emissions (regarded in Schottky
contact models) and generalizing both types of metal contact models. This results, in general, 
in mixed boundary conditions which are coupled in a highly nonlinear manner.

Ohmic Contacts

Ohmic contacts are characterized by a high doping of the semiconductor. This implies a large 
band  bending  and  a  very  thin  barrier  at  the  metalsemiconductor  interface.  In  this  case, 
tunneling of electrons is the dominant transport mechanism. It leads to high current densities 
at low voltage dropsand, consequently, to a low resistance of the contact.

Since tunneling is not included in the drift diffusion equations describing electron transport in 
the semiconductor volume, one should place the actual boundary for the simulation domain at 
the end of the tunneling region. At high doping concentrations, the tunneling length comprises 
the  total  depletion  region,  and  the  boundary  is  placed  at  the  depletion  layer  edge. 
Consequently, we have charge neutrality at the actual boundary that means

.0=−− Npn

Furthermore, the electrostatic potential at the boundary is given by

                                                      ,biap VVV +=                                                       (2.14)

where  apV  is  the  applied  voltage  and  biV  is  the  so  called  built-in  potential  of  the 
semiconductor.  The  built-in  potential  depends  on  semiconductor  material,  doping 
concentration, and temperature.

For very high doping (ideal ohmic contact), the resistance tends to zero which implies [Sch90]

2
innp =

with the intrinsic concentration in  depending on material and temperature.
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This leads to Dirichlet boundary conditions for the electron and hole concentrations

                                            ( ),4
2

1 22 NnNn i ++=                                                (2.15)

                                                 ( )NnNn i −+= 22 4
2

1
.                                               (2.16)

Schottky Contacts

Schottky contacts have a rectifying behavior. This is caused by low semiconductor doping 
which leads to  a slow weak band bending and a thick barrier  at  the interface. Therefore, 
thermionic emission of electrons is the dominant transport mechanism here.

In this case, the carriers crossing the interface have to overcome the barrier height Bφ  arising 
from the band bending. This implies

                          Bbiap VVVV ++=                                                    (2.17)

where apV , biV are as in (2.14) and

BBqV φ=

In zero order approximation, the barrier height Bφ is a constant, dependent on the combination 
of the materials.

Denoting  γ  as the unit outer normal vector on the contact, the boundary condition for the 
continuity equations read as

                                         ( ),0nnqvJ nn −−=⋅γ                                                (2.18)

                                         ( ),0ppqvJ pp −=⋅γ                                                 (2.19)

where nv  and pv are the recombination velocities depending on material and temperature. The 

quantities 0n and 0p are the quasi-equilibrium concentrations.   They depend on barrier height 
and temperature.

Note that we have Dirichlet boundary conditions for the potential V and, consequently, mixed 
boundary conditions for the concentrations n and p.
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  2.2.2   Semiconductor-Insulator Interface

As a consequence of Maxwell's  third law (2.6),  we obtain as  boundary condition for the 
Poisson equation

,σ
γ

ε
γ

ε =
∂

−
∂
∂

d

V
i

V i

where  ε  and  iε  are  the  dielectric  constants  of  the  semiconductor  and  the  insulator, 
respectively, and σ  is the surface charge at the interface.

Regarding the existence of surface recombination, we obtain

                           surfn qRJ −=⋅γ  and   surfp qRJ =⋅γ                                    (2.20)

with

( ) ( )11

2
1

11
pp

s
nn

s

nnp
R

np

surf

+++

−
=

for the continuity equations. Here, n and p denote the electron and hole concentration at the 
contact, respectively. The recombination velocities ns and ps as well as the concentrations 1n , 

1p , and the intrinsic carrier concentration in are parameters depending on the material of the 
semiconductor and the effective doping. By  γ  we denote the outer unit normal vector. If 
surface recombination can be neglected, then we arrive at
   

                                   ,0=⋅γnJ            .0=⋅γPJ                                          (2.21)
   

Summary
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The further miniaturization of optic and electronic components demands a refined network 
analysis  describing  certain  semiconductor  elements  by  contributed  models.  Using  the 
instationary drift-diffusion model,  the  device  equations represent  a  system of  elliptic  and 
parabolic differential equations. The network is described by a differential-algebraic system. 
Both systems are mutually coupled via boundary conditions and integral relations.

The coupled system can be analyzed as an abstract differential algebraic system in infinite-
dimensional Hilbert spaces. For the one-dimensional case (with respect to space), network 
topological criteria for the index of the coupled system are described. Furthermore it is shown 
that the index does not exceed 2. This corresponds exactly to the results for networks with 
compact models instead of distributed models. It is still an open question whether the results 
remain true for a higher-dimensional case.

Appendix
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  1.  Symbols

R      R      set of real numbers
C      capacitance
D      diffusivity
D      electric displacement
J       current density
L       inductance
N      doping concentration

+
DN   donor concentration

−AN  acceptor concentration
R      1. resistance (network element)
         2. generation/recombination rate (drift-diffusion model)
T      1. temperature
         2. end of a time interval
V      electrostatic potential

    biV     built-in potential
e       nodal potential
j        current
n       electron density

in      intrinsic density
p       hole density
q       charge
t        time
x       position variable
Ω     domain
ε      permittivity

    µ      -permeability
  -mobility

  outer unit normal vector
σ     surface charge
φ      flux

Bφ    barrier height

2. Physical constants

Boltzmann constant              k        231038066.1 −⋅ J/K
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Elementary charge                q        191060218.1 −⋅ C

Thermal voltage at 300 K   
q

kT
      0.0259 V

Permeability in vacuum   0µ        81025663.1 −⋅ H/cm

Permittivity in vacuum       0ε         8.85418 1410−⋅ F/cm
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