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 I Computational Grids

The popularity of the Internet and the availability of powerful 
computers and  high-speed  networks  as  low-cost  commodity 
components are changing the way we use computers today. This 
technology opportunity has led to the possibility of using networks of 
computers as a single,  unified computing resource. It is possible to 
cluster  or  couple  a  wide  variety  of  resources  including 
supercomputers,  storage  systems,  data  sources,  and  special 
classes  of devices distributed  geographically  and  use  them as  a 
single  unified resource, thus forming what is popularly known as a 
Computational Grid.

In  particular,  Grid  computing  can  be  defined as  the 
coordinated resource sharing and problem solving in dynamic, multi-
institutional collaborations.   More  simply,  Grid  computing  typically 
involves using many resources (computer,  data,  I/O,  instruments, 
etc.) to solve a single, large problem that could not be executed on 
any  one  resource.  As  a  matter  of  fact, various  Grid  application 
scenarios  have  been  explored  within  both  science and  industry. 
These  applications  include  compute-intensive,  data-intensive, 
sensor-intensive,  knowledge-intensive  and  collaboration-intensive 
scenarios and address problems ranging from fault diagnosis in jet 
engines and earthquake engineering to  bioinformatics,  biomedical 
imaging, and astrophysics.

The  applications  cited  above  need  a  coordinated  resource 
sharing, where the sharing is not primarily  file exchange but rather 
direct access to computers, software, data, and other resources, as 
is required by a range of collaborative problem-solving and resource-
brokering strategies emerging in industry, science and engineering. 
Thus,  this  sharing is,  necessarily,  highly controlled,  with resource 
provides and consumers   defining clearly and carefully just what is 
shared,  who is allowed to share,  and the conditions under which 
sharing occurs.  A set  of  individuals  and/or  institutions  defined by 
such sharing rules form what is called a virtual organization (VO).

There are three main issues that characterize Computational 
Grids:  heterogeneity, scalability  and  dynamic  adaptability.  A  Grid 
involves a multiplicity of resources that are heterogeneous in nature 
and  might  span  numerous administrative  domains  across  wide 
geographical  distances.  Moreover,  a Grid  might  grow  from  few 
resources  to  millions.  This  raises  the  problem of  potential 
performance degradation as the Grid size increases. Consequently, 
applications that require a large number of  geographically located 
resources must be designed to be extremely latency tolerant. Finally, 
in a Grid, resource failures are the rule, not the exception. In fact, 



with so many resources in a Grid, the probability of some resource 
failing is naturally high.

Moreover,  the  participating  hosts  can  be  reclaimed  by  the 
respective owners at any time, and is impossible to know in advance 
whether and when they will become available again. The resource 
managers or applications must tailor their behaviour dynamically so 
as to extract the maximum performance from the available resources 
and services.

In spite of these problems, Grid computing must provide an 
easy access to a virtually unlimited computing and distributed data 
resources,  so  it must  be  able  to  discover,  allocate,  negotiate, 
monitor, and manage the use of network-accessible capabilities in 
order to achieve various end-to-end or global qualities of service. All 
those activities can be considered as parts of a global task called 
resource management.

In traditional computing systems, resource management is a 
well-studied problem.  Resource  managers  such  as  batch 
schedulers, workow engines, and operating systems exist for many 
computing environments. These resource management systems are 
designed  and  operate  under  the  assumption that  they  have 
completed  control  of  a  resource  and  thus  can  implement  the 
mechanisms and policies needed for efective use of that resource in 
isolation.

Unfortunately,  this  assumption  does  not  apply  to  Grids 
because of
the main issues previously described. This situation is complicated 
by the general lack of data available about the current system and 
the competing needs of users, resource owners and administrators 
of the system.

For  this  reason,  much  of  the  early  work  in  Grid  resource 
management  focused on  overcoming  these  basic  issues  of 
heterogeneity,  for  example  through  the  definition of  standard 
resource  management  protocols   and  standard mechanisms  for 
expressing resource and task requirements.

The initial challenges of Grid computing concerning how to run 
a  job, how  to  transfer  large  files,  how  to  manage  multiple  user 
accounts on different systems have been resolved to first  order, so 
users and researchers can now address the issues that will  allow 
more e_ective usage of the resources.

Significant challenges remain, however, in understanding how 
these mechanisms can be e_ectively combined to create seamless 
virtualized  views of  underlying  resources  and  services.  Some  of 
these  challenges  lie  strictly within  the  domain  of  resource 
management,  for  example,  robust  distributed algorithms  for 
negotiating simultaneous service level agreements across a set



of resources. Other issues, such as expression of resource policy for 
purposes of discovery and enhanced security models that support 
exible delegation of resource management to intermediate brokers 
are closely tied to advances in other aspects of Grid infrastructure. 
Hence,  the  key  to  progress  in  the coming  years  is  to  create  an 
extensible  and  open  infrastructure  that  can incorporate  these 
advances as they become available.

Computational  Grids  are  becoming  the  main  execution 
platform  for  high performance  and  distributed  applications.  The 
successful of Grid paradigm is also due to the growth of the World 
Wide Web (WWW) and exploding popularity of the Internet that has 
created  a  new  much  large  scale  opportunity for  distributed 
computing.  As  a  matter  of  fact,  millions  of  desktop PCs  are 
connected to wide-area networks both in the enterprise and in the 
home.  The  exploitation  of  idle  cycles  on  pervasive  desktop  PC 
systems  has recently  received  much  attention  from  the scientific 
community.  This  new platform for  high  throughput  applications  is 
called Desktop Grids  . The details of this platform and the relative 
problems will be described in the next section.

 II Desktop Grids

The  world's  computing  power  and  disk  space  is  no  longer 
primarily  concentrated in  supercomputer  centers  and  machine 
rooms,  but  is  distributed in  hundreds  of  millions  of  personal 
computers  and  game  consoles  belonging to  the  general  public. 
Desktop Grids uses these resources to do scientific supercomputing. 
The number of  Internet-connected PCs is indeed growing rapidly, 
and is projected to reach 1 billion by 2015.  Together,  these PCs 
could  provide  many  PetaFLOPs  of  computing  power.  The  public 
resource approach applies to storage as well as computing. If 100 
million computer users each provide 10 Gigabytes of  storage, the 
total (one Exabyte, or 1018 bytes) would exceed the capacity of any 
centralized  storage  system.  This paradigm  enables  previously 
infeasible  research,  encourages  public  awareness of  current 
scientific  research,  catalyzes global  communities centered around 
scientific interests, and gives the public a measure of control  over 
the directions of scientific progress.

Public-resource computing emerged in the mid-1990s with two 
projects, namely the Great Internet Mersenne Prime Search(GIMPS) 
and Distributed net.  In  1999 another  project,  called SETI@home, 
attracted millions  of  participants  worldwide,  providing  a  sustained 



processing  rate  of over  70  TeraFLOPS  (in  contrast,  the  largest 
conventional supercomputer at that time, the NEC Earth Simulator, 
provided about 35 TeraFLOPs).

SETI@home  is  a  scientific experiment  that  uses  Internet-
connected computers
in the Search for Extraterrestrial Intelligence (SETI), Desktop Grid 
and  Grid  computing  share  the  goal  of  better  utilizing  existing 
computing  resources.  However,  there  are  profound  differences 
between the two paradigms.  As a matter  of  fact,  Grid computing 
involves organizationally-owned  resources:  supercomputers, 
clusters,  and  PCs  owned by  universities,  research  labs,  and 
companies.  These  resources  are  centrally managed  by  IT 
professionals, are powered on most of the time, and are connected 
by full-time, high-bandwidth network links. Furthermore, there is a 
symmetric relationship between organizations: each one can either 
provide or  use  resources.  In  contrast,  Desktop  Grids  involve  an 
asymmetric relationship between projects and participants. Projects 
are typically small academic research groups with limited computer 
expertise and manpower. Most participants are individuals who own 
Windows, Macintosh and Linux PCs, connected to the Internet by 
telephone  or  cable  modems  or  DSL,  and often  behind  network-
address  translators  (NATs)  or firewalls.  The  computers are 
frequently turned off or disconnected from the Internet. Participants 
are not computer experts, and participate in a project only if they are 
interested in  it  and  receive  incentives  such  as  credit  and 
screensaver  graphics. Projects  have  no  control  over  participants, 
and cannot prevent malicious behavior.

A  second  difference  is  that,  Grid  computing  has  many 
requirements  that Desktop  Grid  computing  does  not.  A  Grid 
architecture  must accommodate many  existing  commercial  and 
research-oriented academic systems,  and must  provide a general 
mechanism  for  resource  discovery  and  access.  In  fact, it  must 
address  all  the  issues  of  dynamic  heterogeneous  distributed 
systems, an active area of Computer Science research for several 
decades. This has led to architecture such as Open Grid Services 
Architecture  (OGSA)  ,  which achieves  generality  at  the  price  of 
complexity and, to some extent, performance.

In contrast, the main characteristic of Desktop Grid systems is 
the unobtrusiveness because the resource used are installed and 
designed  for  purposes  other  than  distributed  computing  (e.g. 
desktop  word  processing,  web information  access,  spreadsheet, 
etc.),  thus the resource must be exploited without  disturbing their 
primary use.  Moreover,  the machine including its data,  hardware, 
and processes must be protected from a misbehaving Desktop Grid 
applications.  Analogously,  the  application's  executable,  input,  and 



output data, which may be proprietary, must be protected from user 
inspection and corruption.

As  cited  in  the  previous  section,  another  requirement  is 
concerned with scalability: Desktop Grids must scale to the 1,000's, 
10,000's,  and  100,000's  of  desktop  PC's  deployed  in  enterprise 
networks.  Systems  must scale  both  upward  and  downward 
performing well with reasonable effort at a variety of system scales. 
With thousands to hundreds of thousands of computing resources, 
management  and  administration  effort  in  a  Desktop Grid  cannot 
scale up with the number of resources. Desktop Grid systems must 
achieve manageability, that is the systems should provide tools for 
installing  and  updating  users  easily,  and  tools  for  managing 
applications and resources, and monitoring their progress.
Finally, the last two requirements essentially for any Desktop Grid 
systems are efficiency (the system must exploit all the idle resource 
available) and  robustness:  the  system  must  be  tolerant  of  both 
server failure (for example, data server crashes) and user failure (for 
example, the user shutting off his/her machine). Conventionally, the 
term failure refers to a defect of hardware or software. We use the 
term failure broadly to include all causes of task failure, including not 
only failure of the host's hardware or software, but also, for example, 
keyboard/mouse activity that causes the user to kill a running task.

III Desktop Grid platforms

In this section, we present a overview of four representative 
Desktop Grid projects: BOINC, Entropia, XtremWeb and OurGrid.

1. Berkeley Open Infrastructure for Network Computing

BOINC (Berkeley Open Infrastructure for Network Computing) 
is an open source platform for Desktop Grid computing. BOINC is 
being developed at U.C. Berkeley Spaces Sciences Laboratory by 
the  group that developed and continues to  operate  SETI@home. 
BOINC's general  goal  is  to advance the Desktop Grid computing 



paradigm by encouraging the creation of many projects and a large 
fraction of the world's computer owners to participate in one or more 
projects.
A BOINC project corresponds to an organization or research group 

that does Desktop Grid computing. It is identi_ed by a single master 
URL, which is the home page of its web site and also serves as a 
directory of scheduling servers. Participants register with projects. A 
project  can  involve one  or  more  applications,  and  the  set  of 
applications can change over time. The server complex of a BOINC 
project  is  centered  around  a  relational database  that  stores 
descriptions  of  applications,  platforms,  versions, tasks,  results, 
accounts, teams, and so on. Server functions are performed by a set 
of web services and daemon processes: scheduling servers handles 
RPCs from clients; they issue work and handle reports of completed 
results.
Data  servers  handle  file uploads  using  a  certificate-based 
mechanism to ensure that only legitimate _les, with prescribed size 
limits,  are  uploaded. File  downloads  are handled by  plain HTTP. 
BOINC  provides  tools  (Python scripts  and  C++  interfaces)  for 
creating,  starting,  stopping  and  querying projects  adding  new 
applications, platforms, and application versions, creating tasks, and 
monitoring server performance. Moreover, BOINC is designed to be 
used by scientists, not by system programmers or IT professionals; 
the tools are simple and well-documented, and a full-featured project 
can be created in a few hours.

To prevent  erroneous computational  results,  BOINC uses a 
technique called redundant computing.  In particular, a project can 
specify that N results should be created for each task. Once M _ N 
of  these  have  been distributed  and  completed,  an  application-
specific function is called to compare the results and possibly select 
a canonical result. If no consensus is found, or if results fail, BOINC 
creates new results  for  the task,  and continues this process until 
either a maximum result count or a timeout limit is reached.

As cited in the previous section, scalability is another problem 
that must be consider in Desktop Grid computing projects. Specially, 
in  contest  where we  may  have  millions  of  participants  and  a 
relatively  modest  server  complex. As  a  matter  of  fact,  if  all  the 
participants simultaneously try to connect to the server, a disastrous 
overload condition will generally develop. BOINC has a number of 
mechanisms  to  prevent  this.  In  particular,  all  client/server 
communication uses exponential backoff in the case of failure. Thus, 
if a  BOINC  server  comes  up  after  an  extended  outage,  its 
connection  rate will  be  the  longterm  average.  The  exponential 
backoff scheme is extended to computational errors as well. If, for 
some reason, an application fails immediately on a given host, the 
BOINC client will not repeatedly contact the server; instead, it will 



delay based on  the number  of  failures. BOINC is  being used by 
several  existing  projects  (SETI@home,  Predictor@ home, 
climateprediction.net) and by several other projects in development. 
Many  areas  of  the  BOINC  design  are  incomplete.  For  example, 
some projects require e_cient data replication: Einstein@home uses 
large (40 MB) input _les, and a given input _le may be sent to a 
large number of  hosts (in contrast with projects like SETI@home, 
where each input file is different). In its initial form, Einstein@home 
sends the _les separately to each host, using a system of replicated 
data servers. In order to improve the effciency of the data replication, 
the  BOINC's  team  is  planning  to  exploit a  mechanism  such  as 
BitTorrent  based on peer-to-peer communication.

2. Entropia

Key  advantages  of  the  Entropia  system  are  the  ease  of 
application integration and a new model for providing security and 
unobtrusiveness for the application and client machine. To provide 
rapid  application  integration, Entropia  uses  a  binary modification 
technology  that  obviates  access  to the  applications  source  code 
while providing strong security guarantees and ensuring unobtrusive 
application execution. Other systems require developers to modify 
their  source  code  to  use  custom  APIs  or  simply  rely  on  the 
application  to  be  well  behaved  and  provide  weaker  security  and 
protection.

However,  it  is  not  always  possible  to  get  access  to  the 
application source code (especially for commercial applications) and 
maintaining  multiple  versions of  the  source  code  can  require  a 
significant continuous development effort. As to relying on the good 
intentions  of  the  application  programmers, the  experiments  show 
that even commonly used applications in use for  quite some time 
can  at  times  exhibit  anomalous  behavior.  Entropia's  approach 
ensures both a large base of potential applications and a high level 
of control over the application's execution.

The Entropia system addresses the requirements described in 
Section by  aggregating  the  raw  desktop  resources  into  a  single 
logical  resource. This  logical  resource  is  reliable,  secure  and 
predictable despite the fact that the underlying raw resources are 
unreliable  (machines  may  be  turned  off  or  rebooted),  insecure 
(untrusted  users  may  have  electronic  and  physical access  to 
machines) and unpredictable (machines may be heavily used by the 
desktop  user  at  any  time).  This  logical  resource  provides  high 
performance for  applications  through  parallelism  while  always 
respecting  the  desktop  user and  his  or  her  use  of  the  desktop 
machine. Furthermore, this logical resource can be managed from a 



single  administrative  console.  Addition  or  removal of  desktop 
machines from the Entropia system is easily achieved, providing a 
simple mechanism to scale the system as the organization grows or 
as the need for computational cycles grows.

To support  the execution of  a large number of  applications, 
and to support the execution in a secure manner, Entropia employs 
a proprietary binary sandboxing techniques that enables any Win32 
application  to  be  deployed in  the  Entropia  system  with  no 
modifications and  no  special  system support.  End-users  of  the 
Entropia  system  can  use  their  existing  Win32  applications and 
deploy them on the Entropia system in a matter of minutes.

This  is  significantly different  than  other  early  large-scale 
distributed  computing systems  like  SETI@home  and  other 
competing  systems  that  require rewriting  and  recompiling  of  the 
application source code to ensure safety and robustness.

Entropia's  system  architecture  consists  of  three  layers:  a 
physical  node management  layer  (that  provides  basic 
communication  and naming,  security, resource  management,  and 
application  control),  resource  scheduling (that  provides  resource 
matching,  scheduling and fault  tolerant),  and job scheduling.  This 
architecture provides a modularity that allows each layer to focus on 
a smaller number of concerns, enhancing overall system capability 
and usability. This system architecture provides a solid foundation to 
meet the technical challenges as the use of distributed computing 
matures supporting  the  broadening  the  problems  supportable  by 
increasing the breadth of computational structure, resource usage, 
and  ease  of  application integration.  The  implementation  includes 
innovative solutions in many areas, but particularly in the areas of 
security, unobtrusiveness, and application integration. The system is 
applicable  to  a  large  number  of  applications such  as  virtual 
screening,  sequence  analysis,  molecular  modeling,  and  risk 
analysis. Unfortunately, it seems that there is no future for Entropia: 
this system is not longer maintained. 

3. XtremWeb

XtremWeb  is  designed  to  provide  a  Global  Computing 
framework for resolving different  applications,  on projects  lead by 
institutions, commercial firms or open source communities.

The  XtremWeb  system  may  be  seen  as  several  sets  of 
workers  (ranging from workstations  to  PCs  or  even  handheld 
devices) and servers (ranging from a stand alone PC to cluster of 
servers or distributed and specialized servers).



The  XtremWeb  system  provides  solutions  to  the  desktop 
distributed computing  challenges  discussed  in  Section  1.2.  In 
particular, XtremWeb targets high performance. Thus, although the 
workers  protection  suggests execution  in  a  virtual  environment, 
typically sandboxed Java bytecode,  performance dictates that  the 
end-user  code  should  remain  native.  Like  many other  Global 
Computing systems, XtremWeb uses native code execution.

However, in contrary to them, XtremWeb allows any worker to 
execute  different and  downloadable  applications.  Currently,  to 
become downloadable, the applications follow an ad-hoc verification 
process .Another important aspect is the unobtrusiveness. The user 
decides  when XtremWeb  may  run  a  computation  and  what 
resources  the  computation may  use.  The  availability  of  a  given 
machine  depends  on  the  user  presence  (detected  through  the 
keyboard or  mouse activity),  the presence of  noninteractive tasks 
(detected  through  the  CPU,  memory  and  I/O  usage)  and other 
conditions  like  night  and  day  for  instance.  Resource  utilization  is 
continuously monitored by the worker. An interface to the resources 
is provided by Operating System features, e.g. the /proc directory for 
the  Unix  OSes. A  user  de_nes  an  availability  policy  simply  by 
indicating for each resource a threshold above which the computer is 
usable for a Global Computation and a threshold that provokes the 
interruption of  the computation.  Controlling the resources used by 
the Global Computation can be tuned.

Besides the unobtrusiveness, the usability is another aspect 
that must be considered in a Desktop Grid system. As a matter of 
fact, in XtremWeb, the worker software comes with different tools to 
enforce  its  usability.  The installation  process  follows  two  ways: 
installation on a single workstation and installation on a local area 
network. In both case it does not require the user to have special 
root privileges.
Finally, in order to provide the scalability, XtremWeb aims at scaling 
up to several hundreds of thousands of workers with corresponding 
performance improvement.  This  scalability  goal  is  ensured  by 
several design choices. First, the server throughput is increased by 
using cluster of servers and a meta server. Second, load balancing 
within the cluster of  servers can be achieved through an external 
tool,  able  to  sustain  high  throughput,  typically via  mechanisms 
supported by OS kernel (such as the Linux Virtual Server) or DNS 
aliases. Third, specialized servers can be dedicated to collecting the 
results so as to reduce the traffic to the root servers. Summary, the 
XtremWeb  architecture  exhibits  several  properties.  By supporting 
native execution, XtremWeb can be used by institutions for setting 
up  their  own  Global  Computing  system  based  on  their  legacy 
applications. Servers  architecture  enables  scalability  and  fault 
tolerance.  Future work  will  develop  extensive  testing  on  the 



XtremWeb architecture to evaluate quantitatively its characteristics 
and limits. Tools have been developed to enforce the usability of the 
platform. Installation and administration over a LAN can be done in 
an automated way. The Web interface and contest between teams 
of users is an attractive way to involve the public. The first version of 
the  worker  software  has  been  released  for  public  download in 
November  2000.  The  Future  work  for  XtremWeb  is  to  find the 
relevant performance  parameters  that  define and  characterize  a 
parallel architecture built through the Global Computing model.

4. OurGrid

The  OurGrid  system  is  defined as  an  open,  free-to-join, 
cooperative grid  which  labs  donate  their  idle  computational 
resources in exchange for accessing other labs' idle resources when 
needed.  The OurGrid scientists have implemented a system fast, 
simple, scalable and secure for Bag-of Tasks (BoT) grid applications 
(details about BoT will be discussed in the next section). In the rest 
of this section, we described how the goals of OurGrid have been 
implemented.

First  of  all,  the  OurGrid  respects  the  fundamental 
characteristic of an Desktop Grid system: it must be non-intrusive, 
that is a local user has
priority for local resources. As a matter of fact, the submission of a 
local
job  kills  any  foreign  jobs  that  are  running  locally.  Another  key 
requirement
for Desktop Grids is scalability. OurGrid is scalable both in the sense 
that it supports  thousands of  labs,  and that  joining the system is 
straightforward.

OurGrid is based on a peer-to-peer network, where each labs 
in the Grid correspond to a peer in the system. The main problem 
using  a  peer-to-peer system  is  that  the  performance  could  be 
compromised by freeriders:  a  peer that  only  consume resources, 
never contributing back to the community.

In order to incentive peers to cooperate, and consequently 
discourage the freeriders, OurGrid uses a Network of Favors: a favor 
is the allocation of  a processor to a peer that  request it,  and the 
value of that favor is the value of the work done for the requesting 
peer.  Each peer A keeps a local  record of  the total  value of  the 
favors it has given to and received from each peer B. The rationale 
is that each peer autonomously prioritize donations to the peer to 
whom the owe most favors, motivating cooperation.

Since  a  given  lab  will  commonly  run  tasks  from  other 
unknown labs, the security is also a fundamental aspect especially in 



these days with so many software vulnerabilities. For this reason, 
OurGrid uses Sandboxing Without A Name (SWAN) to protect local 
resources from foreign unknown code. SWAN is a solution based on 
the  Xen  virtual  machine   that  isolates  the foreign  code  into  a 
sandbox, where it cannot access local data nor use the network.

Finally, OurGrid has achieved the goals regarding simplicity 
and speed using MyGrid: a personal broker that performs application 
scheduling  and provides  a  set  of  abstractions  that  hide  the  Grid 
heterogeneity from the user. 

A  efficient scheduler  needs  information  about  application 
(such as estimated execution time) and resources (processor speed, 
network topology, load, and so on). However, it is  difficult  to obtain 
accurate information in a system as large and widely dispersed as a 
Grid. MyGrid's first scheduler is Workqueue with Replication(WQR): 
a  scheduling  algorithm  that  uses  no  information about  tasks  or 
machines.  In  order  to  recover  from  bad  allocations  of  tasks to 
machines (which are inevitable, since WQR uses no information), 
this algorithm uses replication.  WQR will  be described with  more 
details in chapter V . 

However, WQR does not take data transfer into account. For 
this  reason,  MyGrid  provides  another  scheduling  algorithm called 
Storage Affinity : it does not use dynamic, hard-to-obtain information 
as  other  Grid  scheduler  proposed.  The  idea  is  exploit  data 
reutilization to avoid unnecessary data transfers. In particular, given 
a task the scheduler is able  to calculate the storage  affinity  with 
respect  to  each  other  site.  A  site has  a  good  storage  affinity 
considering a particular task, if it contains data necessary to execute 
the task, that is it is not necessary to transfer data in the remote host 
in order to run the task. Since Storage Affinity does not use dynamic 
information,  it  can  make  "bad"  assignment  between  tasks  and 
resources. In order to recover from bad assignment, also Storage 
Affinity  uses task replication strategy similar to WQR. In summary, 
OurGrid has three main components: the OurGrid peer, the MyGrid 
broker  and the SWAN security  service.  Figure 1  shows them all, 
depicting the OurGrid architecture.  OurGrid is in production since 
December 2004  and  its  current  status  can  be  seen  at 
http://status.ourgrid.org.
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1. Fault-tolerant scheduling

A Grid may potentially  encompass thousands  of  resources, 
services, and applications that need to interact in order for each of 
them  to  carry  out  its task.  The  extreme  heterogeneity  of  these 
elements gives rise to many failure possibilities, including not only 
independent failures of each resource, but also those resulting from 
interactions among them.

Moreover,  resources  may  be  disconnected  from  a  Grid 
because of machine hardware and/or software failures or reboots, 
network  misbehaviors,  or  process  suspension/abortion  in  remote 
machines  to  prioritize  local  computations.  Finally,  configuration 
problems or  middleware bugs may easily make an application fail 
even if the resources or services it uses remain available. In order to 
hide  the  occurrence  of  faults,  or  the  sudden  unavailability  of 
resources,  fault-tolerance mechanisms  (e.g.,  replication  or 
checkpointing-and-restart) are usually employed.

2. Knowledge-based and knowledge-free scheduling

The decisions a scheduler makes are only as good as the 
information  provided to  it.  Many theoretical  schedulers  assume 
one has 100 percent of the information needed, at an extremely 
fine  level  of  detail,  and  that  the  information  is  always  correct. 
Unfortunately, as discuss later, this scenario is overly unrealistic. 
In  general  we  have  only  the  highest  level  of  information.  For 
example, it  may be known that an application needs to run on 
Linux, will produce output _les somewhere between 20 MB and 
30 MB, and should take less than three hours but might take as 
long as five. Or, it may be known that a machine is running Linux 



and has a _le system located at certain address that ten minutes 
ago had 500 MB free, but there is no information about what will 
be free when one's application runs there.
Usually,  the  information  regards  the  tasks  (execution  time, 
software  and  hardware  requirements,  etc)  and  the  resources 
(computational power, availability, etc). In general, the scheduling 
algorithms assume a partial knowledge, and use it to calculate a 
sort of utility value for each assignment task/resource. With this 
value  the  scheduler  is  able  to  valuate  how  good  is  each 
assignment and decides how make the scheduling decisions. In 
some case, the goodness of an assignment could be decided also 
considering the cost to use a particular resource. As  matter 
of fact, if the resources are freely usable any user could have an 
antisocial  behavior  (i.e.,  a  single  user  can  occupy  the  whole 
Computation  Grid  with  his  tasks).  To  avoid  this  situation,  the 
scientific  community has proposed some approaches based on 
micro economy theories.

3. On-line and batch-mode scheduling algorithms

Independently of the amount of information about resources 
and task knew, the scheduling policies can be grouped into two 
categories: on-line and batch mode. In the on-line mode, a task is 
assigned to a machine as soon as it arrives at the scheduler and 
this decision is not changed once it is computed.

Conversely, in the batch mode, tasks are not mapped onto 
the machines as they arrive; instead they are collected into a set 
that  is  examined  for  mapping  at  prescheduled  times  called 
mapping events. In the next section, we provide some example to 
put in evidenced the differences between on-line mode and batch 
mode scheduling.

V Examples

In  this  section,  examples  will  be  taken  from  the  scientific 
literature  to  demonstrate their  relationship  to  one  another  with 
respect to the taxonomy detailed in previous section.



1. Knowledge-free scheduling – WQR algorithm.

WQR  is  an  extension  of  the classical  WorkQueue  (WQ) 
scheduling  algorithm  in  which  tasks  in  a  bag are  chosen  in  an 
arbitrary  order  and  are  sent  to  the  processors  as  soon  as they 
become available.  WQR adds  task  replication  to  WQ in  order  to 
cope with  task  and  host  heterogeneity,  as  well  as  with  dynamic 
variations of the available resource capacity due to the competing 
load caused by other Grid users. WQR works very similarly to WQ, 
in the sense that tasks are scheduled the same way. However, after 
the last task has been scheduled, WQR assigns replicas of already-
running tasks to the processors that become free (in contrast, WQ 
leaves them idle). Tasks are replicated until a predefined replication 
threshold  is  reached.  When  a  tasks  replica  terminates  its 
execution,its other replicas are canceled.

By replicating a task on several resources,WQR increases the 
probability of  running  one  of  the  instances  on  a  faster  machine, 
thereby  reducing  task completion  time.  WQR  performance  are 
equivalent  to solutions  that  require  full  knowledge  about  the 
environment, at the expenses of consuming more CPU cycles.

Figure  3  shows  in  detail  the  WQR  scheduling  policy.  This 
algorithm needs some data structures and functions. In particular, it 
uses two data structures: a queue of tasks to complete (represented 
by  letter  Q,  line  2), a  set  of  resources  that  compose  our 
Computational Grid (represented by letter R, line 3) moreover, WQR 
uses a variable RPLFCT that  represents the replication threshold 
(line  4)  and  four  functions:  RPL(t)  (that  returns the  number  of 
replicas created  for  task  t,  line  5),  getRscFree(R)  (that  returns a 
identi_er  of  a  resource  available,  line  6),  deleteInstance(t)  (that 
deletes all running instances of task t, line 7) and, _nally, assign(r,t) 
(that  assigns  task t  to  resource  r,  line  8).  The  algorithm  starts 
checking the queue of tasks Q: if the queue of the tasks is not empty 
(line 10), the algorithm starts waiting (line 11) for two type of events: 
RscF ree or TaskDone. The _rst event (line 12) means that there is 
at least a resources idle, so it is ready to execute atask. Thus, the 
scheduler selects this resource r (line 13) and extracts a task t on 
the top of the queue Q (line 14). If the number of replicas created for 
task  t  is  smaller  than  the  replication  threshold  (line  15),  a  new 
instance of task t is created and submitted to resource r (line 16) and 
task t is inserted again in the queue Q (line 17). Conversely, if the 
event was TaskDone (line 19), all the running instances of task done 
are deleted (line 20). Thus, the hosts become ready to execute other 
tasks.

1:  - data structures and functions -
2: Q {is the queue of the tasks (Qi is the ith task)}



3: R {is the set of resources (Ri is the ith  resource)g
4: RPLFCT {is the maximum number of available replicas for each task}
5: RPL(t) {returns the number different instances provided}
6: getRscFree(R) {returns a resource available}
7: deleteInstances(t) {deletes all running instances of task t}
8: assign(r,t) {assigns task t to resource r}
9: - WQR algorithm -
10: while Q is not empty do
11: wait(event)
12:   if (event = = "RscF ree") then
13:     r = getRscFree(R); {r is a resource available}
14:     t = pop front(Q); {extracts the first task t of the queue}
15:     if (RPL(t) < RPLFCT) then
16:         assign(r,t); {assigns task t to resource r}
17:       push back(Q,t); {adds task t to the end of the queue}
18:     end if
19: else {event = = "TaskDone"}
20:    deleteInstances(t); {deletes all running instances of task t}
21: end if
22: end while

Figure 3: WQR

2. On-line mode scheduling

In the on-line mode scheduling, the scheduler must select the 
best resource given a particular task. The resource selection is done 
ordering the hosts in  the ready queue according to some criteria 
(e.g., by clock rate, by the number of cycles delivered in the past) 
and to assign tasks to the "best" hosts  first. This method is also 
called resource prioritization.
The  simplest  on-line  scheduling  policy  is  First-Come-First-Serve 
(FCFS) where  the  scheduler  selects  the first host  in  the  ready 
queue. Although this policy is not accurate since it does not consider 
any kind of  information concerning either tasks or  hosts,  FCFS is 
often used also in important Desktop Grid projects like XtremWeb 
and BOINC. This is due to the fact that, in a dynamic and extremely 
heterogeneous  environment  like  Grid  it  is  difficult to obtain  such 
information. Moreover many works, as described in, considers that 
when the number of tasks is about equal or greater than the number 
of hosts, there is just a little benefit of prioritization over FCFS. This 
can be explained considers that the most capable hosts tended to 
request tasks the most often, and so FCFS performed almost as well 
as  any  of  the  prioritization heuristic  proposed  in  the  scientific 



literature.  Many  of  these  scheduling policies  are  based  on  the 
classical  on-line  scheduling  algorithms:  minimum completion  time 
(MCT), minimum execution time (MET), switching algorithm (SA), k-
percent best (KPB) and opportunistic load balancing (OLB). 
For example, the work in [16] describes three methods for resource 
prioritization using  different  levels  of  information  about  the  hosts 
from virtually no  information  to  comprehensive  historical  statistics 
derived  from  trace  for each  host.  In  particular,  for  the  PRI-CR 
method,  hosts in the server's ready queue are prioritized by their 
clock rates. Similar to PRI-CR, PRICR- WAIT sorts hosts by clock 
rates, but the scheduler waits for a fixed period of 10 minutes before 
assigning tasks to hosts.  The rationale is that collection a pool  of 
ready  hosts  before  making  the  assignments  can  improve host 
selection.  Finally,  the  third  method  called  PRI-HISTORY  uses 
dynamic information,  i.e.  history  of  a  host's  past  performance  to 
predict its future performance. All the results report in [16] are based 
on  scenarios where  the  number  of  tasks  is  comparable  with  the 
number of resources. We believe that di_erent scenarios where the 
number of tasks can be greater than the number of machines should 
be evaluated.
Other  works  considers  the  performance  of  prioritization  methods 
limited
by the choice of the slowest hosts. For this reason they proposed 
other
methods based on the exclusion of some hosts and never use them 
to  run application  tasks  (these  methods  are  called  resource 
exclusion).  Filtering can be  based on  a simple  criterion,  such as 
hosts with clock rates below some threshold. Often, the distribution 
of  resource  clock  rates  is  so  skewed that  the  slowest  hosts 
signi_cantly impede application completion, and so excluding them 
can  potentially  remove  this  bottleneck.  A  more  sophisticated 
resource exclusion strategy consists in removing hosts that would 
not complete  a  task,  if  assigned to  them,  before  some expected 
application completion time. In other words,  it  may be possible to 
obtain an estimate of when the application can reasonably complete, 
and  not  use  any  host  that would  push  the  application  execution 
beyond this estimate. The advantage of  this method compared to 
blindly excluding resources with a fixed threshold is that it should not 
be  as  sensitive  to  the  distribution  of  clock  rates. One  of  the 
scheduling algorithm belong at this category is real-time scheduling 
advisor  (RTSA).  RTSA  is  a  system  for  scheduling  soft  real-time 
tasks using statistical predictors of host load. The system presents to 
a user the confidenceintervals for the running time of a task. These 
confidence intervals are  formed  using  time  series  analysis  of 
historical information about host load. However, the work assumes a 



homogeneous environment and disregardtask failure caused by user 
activity, thus its relevance on Desktop Grids is questionable.
The work described is the most relevant in terms of Desktop Grid 
scheduling.  The  author  investigates  the  problem  of  scheduling 
multiple  independent compute  bound  applications  that  have  soft-
deadline  constraints on  the  Condor  Desktop  Grid  system.  Each 
"application"  in  this  study  consists of  a  single  task.  The  issue 
addressed  in  the  paper  is  how  to  prioritize multiple  applications 
having soft deadlines so that the highest number of deadlines can be 
met. The author uses two approaches. One approach is to schedule 
the application with the closest deadline first. Another approach is to 
determine whether the task will complete by the deadline using a 
history of  host  availability  from  the  previous  day,  and  then  to 
randomly  choose  a task  that  is  predicted  to  complete  by  the 
deadline. The author  finds that a combined approach of scheduling 
the task that is expected to complete with the closest deadline is the 
best method. Although the platform model  in that study considers 
shared and volatile hosts, the platform model assumes that the hosts 
have  identical  clock  rates  and  that  the  platform  supports check-
pointing. So, the study did not determine impact of  relatively slow 
hosts or task failures on execution for a set of tasks; likewise, the 
author  did  not  study  the  effect  of  resource  prioritization  (e.g., 
according  to  clock  rates) or  resource  exclusion. Batch  mode 
scheduling In  the  batch  mode  scheduling,  the  scheduling 
approaches  are  typically  more complicated  with  respect  to  the 
previous situation. As a matter of fact, the scheduler, besides the set 
of  resources,  knows  the  set  of  tasks  and  it  can consider  any 
combination of task/resource. Unfortunately, considering all possible 
combinations in order  to decide the best set  of  assignments is a 
wellknown NP-complete  problem if  throughput  is  the  optimization 
criterion .  For  this  reason,  the batch mode scheduling algorithms 
proposed in  the  scienti_c  literature  provides  suboptimal  solutions 
such as Min-Min, Max-min and Su_erage (all described in detail in ).
The most relevant batch mode scheduling policy are based on the 
classic algorithm  cited  above.  For  example,  Xsufferage is  an 
extension of Sufferage policy that is able to exploit file locality issues 
without any apriori analysis of the task-file dependence pattern. The 
idea is that if a  file required by some task is already present at a 
remote cluster, that task would "suffer" if not assigned to a host in 
that cluster. The Sufferage's value would then be a simple way of 
capturing such situations and ensuring maximum file re-use.
This  is  somewhat  reminiscent  of  the  idea  of  task/host  affinities 
introduced in [31], where some hosts are better for some tasks but 
not for others. The problem of this algorithm regards the necessity to 
know many information to calculate the completion time of the tasks. 
In particular, it needs to know the HostSpeed (a measure of the host 



speed),  the  HostLoad  (the  load  of  the host  due  to  the  local 
processes) and the TaskSize (the completion time of a task in a host 
with HostSpeed=1 and HostLoad=0).
Moreover,  as  we  have  cited  above,  some  scheduling  algorithm 
needs an extremely fine level of detail such as First-order Prediction-
based Dynamic FPLTF (FP Dynamic FPLTF) , abbreviated as FP. 
FP is a predictionbased scheduling algorithm that works as FPLTF 
except that it needs the host's latest two load records. The scheduler 
uses  these  two  records to  reconstruct  an  approximated  hosts 
loading model to predict the hosts's speed in the future based on the 
linear  function.  FP  is  able  to  achieve  good performances  but,  it 
needs a level of detail about information of tasks and hosts that is 
overlay unrealistic to obtain in a Computational Grid, for the reasons 
previously discussed.

3. Fault-tolerant scheduling

The scheduling approaches discussed above do not consider 
the  occurrence of  faults,  but  as  we  have  just  observed,  Grid 
environments are prone of failures. Task failures near the end of the 
application, and unpredictably slow hosts can cause major delays in 
application execution. Many solutions propose the replication of the 
tasks on multiple hosts, either to reduce the probability of task failure 
or to schedule the application on a faster host. Replication a task 
may  increase the  chance  that  at  least  one  task  instance will  be 
completed. One of these proposals is WorkQueue with Replication 
(WQR):  a  knowledge-free  scheduling  algorithm  that  adds  task 
replication to  the  classical  Workqueue(WQ)  scheduler.  The 
beginning  of  the algorithm  execution  is  the  same  as  the  simple 
Workqueue and continues the same until the bag of tasks becomes 
empty. At this time, in the simple Workqueue, hosts that _nish their 
tasks would become idle during the rest of the application execution. 
Using the replication approach, these hosts are assigned to execute 
replicas of tasks that are still  running. Tasks are replicated until  a 
prede_ned maximum number of replicas is achieved. When a task 
replica _nishes, its other replicas are canceled. This policy has the 
drawback of  wasting CPU cycles (due to the replicas that  do not 
contribute to the completion of the tasks), which could be a problem 
if  the  Desktop Grid is  to  be  used by more  than  one  application. 
Conversely  of  these  knowledge-free  schedulers,  the  scientific 
literature has  proposed  fault-tolerant  schedulers  that  combines 
replication  and  knowledgebased scheduling.  For  example, 



Distributed  Fault-Tolerant  Scheduling  (DFTS)  is  an  on-line 
scheduling policy that uses job replication strategy and it considers 
available suffcient information to estimate the run-time of the task. In 
particular, when a job arrives, DFTS chooses a set of n candidates 
sites for job execution and orders them for an estimate of the job 
completion time. If the desirable replication threshold is greater than 
n,  DFTS  reserves a  set  of  resources  equal  to  the  number  of 
unscheduled  job  replicas.  If  a job  successfully  completes,  DFTS 
sends releases message to each site it had reserved such that these 
sites can be used for running other jobs. The experimental results of 
DFTS show that performances degrade gracefully in the presence of 
failures, but it does not consider the amount of waste cycles due to 
the useless replicas.

Besides the completion time and the number of the replicas 
desired, other  scheduling  policies  speci_ed  also  a  minimum 
replication threshold. For example, in the Fault Tolerant Scheduling 
algorithm (FTSA), along with the job, two values are specified by the 
user: the number of desired replicas n and the replication threshold 
k, where k _ n. FTSA picks the n best hosts (ordered by an estimate 
of the job completion time) and send them the replicas of the task. 
The system must ensure that  k replicas are running. That is,  the 
number of replicas may fall below n due to replica failure, but not 
below k. Although FTSA could achieve good performance even in 
presence  of  fault,  it  is  not  clear  explained  how  the  user  should 
specify the values of n and k.

Finally, task checkpointing is another means of dealing with 
task failures since the task state can be stored periodically either on 
the local disk or on a remote checkpointing server; in the event that 
a  failure  occurs,  the application  can  be  restarted  from  the  last 
checkpoint.  In  combination  with checkpointing,  process  migration 
can be used to deal with CPU unavailability or when a "better" host 
becomes available by moving the process to another machine. For 
example,  the  EXCL-PRED-CHKPT  is  a  scheduling policy  that 
assumes  a  checkpoint  frequency  equals  to  2.5  minutes  (interval 
between  two  checkpoints)  and  the  cost  of  checkpointing  is  15 
seconds (time to save/retrieve a checkpoint to/from a remote host). 
In this work, the authors note that the poor performance of EXCL-
PRED-CHKPT is due to the fact that a task is not reassigned when it 
is assigned to a slow host or when the host becomes unavailable for 
task  execution.  Moreover,  the  authors consider  that  remote 
checkpointing  or  process  migration  is  most  likely infeasible  in 
Internet  environments,  as  the  application  can  often  consume 
hundreds of megabytes of memory and bandwidth over the Internet 
is often limited.



4. Economic models

The  scheduling  policies  previously  described  consider  the 
resources  in  Computational Grid  freely  usable  without  any 
constraints.  Unfortunately,  if constraints  are  not  put  on  how  the 
resource on how resources are used,  they may be misused.  For 
instance, if all resources can be used without any limitation, situation 
in  which  all  task  are  submitted  to  the  best  resources (e.g.,  the 
resource that has the best performance and availability) may arise, 
thus  leaving  idle  other  resources.  Moreover,  antisocial  behaviors, 
where a user submits a replica of its application on all the resources, 
with the aim of speculatively exploit them to reduce the execution 
time of  his application, may arise as well. In order to avoid these 
phenomena,  a  possible solution  consists  in  associating  a  cost  to 
each  resource,  and  a  budget  to  each user/application.  When an 
application is run on a resource, a proper amount of (virtual) money 
is  allocated  to  that  application,  and  is  subtracted  from the  total 
budget  to  account  for  the  usage  of  the  resource.  The  so-called 
economic approach  to  resource  management  has  received  great 
attention  in  the recent  Grid  literature,  where  both  scheduling 
algorithms  taking  into  account resource  costs  and  application 
budgets , and automatic approaches for the computation of resource 
prices , have been proposed.

Some of the commonly used economic models that can be 
employed  for managing  resources  environment,  include:  the 
commodity  market model,  the posted price model,  the bargaining 
model, the tendering/contract-net model, the auction model, the bid-
based  proportional  resource  sharing  model,  the 
community/coalition/bartering  model  and  the  monopoly  and 
oligopoly. One example of commodity market model is the Nimrod/G 
resource  broker:  a  global  resource  management  and  scheduling 
system shown on Figure 2,  that supports deadline and economy-
based computations in Grid computing environments for parameter 
sweep applications. In particular, in the Nimrod/G application level 
resource  broker,  three  adaptive  algorithms  for scheduling  are 
incorporated:  (i)  time  minimization,  (ii)  cost  minimization and  (iii) 
none  minimization.  The  time  minimization  algorithm  attempts  to 
complete an experiment as quickly as possible, within the available 
budget.



Figure.2 Nimrod/G resource broker

 
The  cost  minimization  algorithm  attempts  to  complete  an 

experiment with  the  lowest  cost  as  possible  within  the  deadline. 
Finally, the none minimization attempts to complete the experiment 
within the deadline and cost constraints without  minimizing either. 
The price of each resource has been Figure 2: Nimrod/G resource 
broker  established  dynamically  using  GRid  Achitecture  for 
Computational  Economy(GRACE)  but  the  results  discussed  are 
based  on  an  arbitrary assignment  for  demonstrate  purpose  only. 
Thus,  it  is  di_cult  to  evaluate the  effective  performance  of  this 
scheduling  algorithm. Also  the  researchers  of  the  University  of 
California at Berkeley propose a market-based approach to cluster 
resource  management  based  on  the notion  of  a  Computational 
Economy. In this model, resource rights for a shared resource are 
encapsulated as tickets. A resource is represented by a total of T 
tickets. An application holding t  tickets competing for  use of  that 
resource  obtains  a  share  of  t=T  of  the  resource.  The  main 
contribution of  this work is the discussion about  the systems that 
implements  marketbased ideas  to  cluster  resource  management. 
The  models  studied  (Ferguson, Spawn,  Popcorn,  Mariposa,  SC 
centers) apply di_erent interpretation of tokens distribution and what 
resources share, but the main observation regards that most of the 
work so far has focused mainly on the economic front-end and layer. 
Very little attention has been paid to the end-to-end problem: 



An approach that is not based on the price of the resources presents 
a baseline architecture for bootstrapping economies based on peer-
to-peer bartering. Bartering strategies specify how peers negotiate 
exchange  rates  for  peering  and  how  peers  execute  the peering 
protocol.  Negotiating  exchange  rates  involves  determining  what 
amount of resources a peer X exchanges with a peer Y as part of 
the peering and how many such exchanges will occur. One simple 
strategy  based  on  reciprocity that  has  proven  to  be  remarkably 
robust and e_ective against a wide range of competing strategies is 
TIT  FOR  TAT  .   TIT  FOR  TAT  is  thestrategy  of  beginning  with 
cooperation and, thereafter, doing whatever the other peer did in the 
previous  round.  It  is  simple,  encourages  cooperation, punishes 
defection (but is forgiving), and in practice outperforms virtually all 
competing strategies in a number of  situations.  Unfortunately,  the 
work explains the theoretical aspects that should guaranteed good 
performance of the model proposed, but no results are presented to 
evaluate this bartering model.
.

VI Analysis 

1. Knowledge-base algorithm versus knowledge-free algorithm

Obtain information about the status of the resource is often 
difficult, especially in  Grid  environments.  This  is  due  to  some 
characteristics that are intrinsic to Grids such as heterogeneity and 
volatility  of  the  resources. Moreover,  in  order  to  achieve  good 
performance, it is necessary to know the status of the resources in 
the  next  future,  because just  monitoring the resource  (when it  is 
possible) is not enough. The scientific literature has proposed tools 
able to obtain dynamic information such as host load and network 
bandwidth  with  some  good  results.  Unfortunately these  are  only 
initial  encouraging  results,  thus  the  knowledge-free scheduling 
algorithms are still popular in Grid environments. On-line scheduling 
versus  batch  mode  scheduling The  main  di_erence,  in  terms  of 
performance,  between  on-line  scheduling and  batch  mode 
scheduling regards principally the arrival rate. When the arrival rate 
is  low,  machines may be  ready to  execute a  task  as  soon as it 
arrives at the scheduler. Therefore, it may be bene_cial to use the 
scheduler in the on-line mode so that a task does not need to wait 



the next scheduling event to begin its execution. In batch mode, the 
scheduler considers a bag of tasks for matching and scheduling at 
each  scheduling  event.  This  enables the  scheduling  algorithm to 
possibly  make  better  decisions,  because  the scheduler  have  the 
resource requirement information for all tasks, and know about the 
actual execution times of a larger number of tasks (as more tasks 
might complete while waiting for  the scheduling event).  When the 
task arrival rate is high, there will be a su_cient number of tasks to 
keep  the machines  busy  in  between  the  scheduling  events,  and 
while an assignment is being computed.

2. Fault-tolerant scheduling versus no fault-tolerant scheduling

Although  scheduling  and  fault  tolerance  have  been 
traditionally  considered independently  from each other,  there is  a 
strong correlation between them. As a matter of fact, each time a 
fault-tolerance  action  must  be  performed, i.e.  a  replica  must  be 
created or a checkpointed job must be restarted, scheduling decision 
must be taken in order to decide where these jobs must be run, and 
when  their  execution  must  start.  A  scheduling  decision taken  by 
considering  only  the  needs  of  the  faulty  task  may  thus  strongly 
adversely  impact  non-faulty  jobs,  and  vice  versa.  Therefore, 
scheduling and fault tolerance should be jointly addressed in order to 
simultaneously achieve fault tolerance and satisfactory performance.

VII Conclusions

The intention of this chapter has been to provide the related work in 
the area of resource management. This has been done through the 
presentation of  taxonomy on the scheduling policies used in Grid 
computing.  From  our  study,  we  can  assert  that  usually  the 
scheduling literature has considered efficiency and robustness as 
orthogonal  aspects,  that  is  their  interactions  are  not  taken  into 
account  when  scheduling  applications  on  Computational  Grid. 
Unfortunately, as already mentioned before, in Desktop Grids faults 
may occur, and in this case the execution time of the applications 
gets much larger,  as there is the need to recover from the fault. 
Consequently, there is the need of exploring scheduling strategies 
that  attempts  to  maximize  application  performance  in  face  of 
occurrence of faults.

For this reason, in the next chapters of this thesis, we propose a 
novel  fault-tolerant  and  knowledge-free  scheduler  based  on  the 



WQR algorithm able to achieve performance better than alternative 
scheduling strategies.
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