

Report title: Scheduling algorithms for desktop grid platforms

Author: Bogdan Bogdanov

Scientific supervisor: prof. Daniel Ioan

Date: 06.08 2009

Universitatea "Politehnica" din Bucureşti

Facultatea de Inginerie Electrica –CIEAC-
LMN

Marie Curie Doctoral School in EE and CS

Spl. Independenţei 313, RO-060042, Bucureşti ROMANIA

http://www.lmn.pub.ro/ Tel/Fax: (40 21) 311 8004, (40 21) 316 95
71,

e-mail: lmn@lmn.pub.ro

Acknowlidgement

I would like to express my sincere gratitude to my advisor
Prof. Daniel IOAN for providing me his invaluable insights,
encouragement, guidance and financial support throughout my whole
study period of this internship.

Contents

I Computational Grids
II Desktop Grids
III Desktop Grid platforms

1. Berkeley Open Infrastructure for Network Computing
2. Entropia
3. XtremWeb
4. OurGrid

IV Classification of scheduling algorithm categories
1. Fault-tolerant scheduling
2. Knowledge-based and knowledge-free scheduling
3. On-line and batch-mode scheduling algorithms

V Examples
1. Knowledge-free scheduling – WQR algorithm.

2. On-line mode scheduling
3. Fault-tolerant scheduling
4. Economic models

VI Analysis
1. Knowledge-base algorithm versus knowledge-free algorithm
2. Fault-tolerant scheduling versus no fault-tolerant scheduling

VII Conclusions

 I Computational Grids

The popularity of the Internet and the availability of powerful
computers and high-speed networks as low-cost commodity
components are changing the way we use computers today. This
technology opportunity has led to the possibility of using networks of
computers as a single, unified computing resource. It is possible to
cluster or couple a wide variety of resources including
supercomputers, storage systems, data sources, and special
classes of devices distributed geographically and use them as a
single unified resource, thus forming what is popularly known as a
Computational Grid.

In particular, Grid computing can be defined as the
coordinated resource sharing and problem solving in dynamic, multi-
institutional collaborations. More simply, Grid computing typically
involves using many resources (computer, data, I/O, instruments,
etc.) to solve a single, large problem that could not be executed on
any one resource. As a matter of fact, various Grid application
scenarios have been explored within both science and industry.
These applications include compute-intensive, data-intensive,
sensor-intensive, knowledge-intensive and collaboration-intensive
scenarios and address problems ranging from fault diagnosis in jet
engines and earthquake engineering to bioinformatics, biomedical
imaging, and astrophysics.

The applications cited above need a coordinated resource
sharing, where the sharing is not primarily file exchange but rather
direct access to computers, software, data, and other resources, as
is required by a range of collaborative problem-solving and resource-
brokering strategies emerging in industry, science and engineering.
Thus, this sharing is, necessarily, highly controlled, with resource
provides and consumers defining clearly and carefully just what is
shared, who is allowed to share, and the conditions under which
sharing occurs. A set of individuals and/or institutions defined by
such sharing rules form what is called a virtual organization (VO).

There are three main issues that characterize Computational
Grids: heterogeneity, scalability and dynamic adaptability. A Grid
involves a multiplicity of resources that are heterogeneous in nature
and might span numerous administrative domains across wide
geographical distances. Moreover, a Grid might grow from few
resources to millions. This raises the problem of potential
performance degradation as the Grid size increases. Consequently,
applications that require a large number of geographically located
resources must be designed to be extremely latency tolerant. Finally,
in a Grid, resource failures are the rule, not the exception. In fact,

with so many resources in a Grid, the probability of some resource
failing is naturally high.

Moreover, the participating hosts can be reclaimed by the
respective owners at any time, and is impossible to know in advance
whether and when they will become available again. The resource
managers or applications must tailor their behaviour dynamically so
as to extract the maximum performance from the available resources
and services.

In spite of these problems, Grid computing must provide an
easy access to a virtually unlimited computing and distributed data
resources, so it must be able to discover, allocate, negotiate,
monitor, and manage the use of network-accessible capabilities in
order to achieve various end-to-end or global qualities of service. All
those activities can be considered as parts of a global task called
resource management.

In traditional computing systems, resource management is a
well-studied problem. Resource managers such as batch
schedulers, workow engines, and operating systems exist for many
computing environments. These resource management systems are
designed and operate under the assumption that they have
completed control of a resource and thus can implement the
mechanisms and policies needed for efective use of that resource in
isolation.

Unfortunately, this assumption does not apply to Grids
because of
the main issues previously described. This situation is complicated
by the general lack of data available about the current system and
the competing needs of users, resource owners and administrators
of the system.

For this reason, much of the early work in Grid resource
management focused on overcoming these basic issues of
heterogeneity, for example through the definition of standard
resource management protocols and standard mechanisms for
expressing resource and task requirements.

The initial challenges of Grid computing concerning how to run
a job, how to transfer large files, how to manage multiple user
accounts on different systems have been resolved to first order, so
users and researchers can now address the issues that will allow
more e_ective usage of the resources.

Significant challenges remain, however, in understanding how
these mechanisms can be e_ectively combined to create seamless
virtualized views of underlying resources and services. Some of
these challenges lie strictly within the domain of resource
management, for example, robust distributed algorithms for
negotiating simultaneous service level agreements across a set

of resources. Other issues, such as expression of resource policy for
purposes of discovery and enhanced security models that support
exible delegation of resource management to intermediate brokers
are closely tied to advances in other aspects of Grid infrastructure.
Hence, the key to progress in the coming years is to create an
extensible and open infrastructure that can incorporate these
advances as they become available.

Computational Grids are becoming the main execution
platform for high performance and distributed applications. The
successful of Grid paradigm is also due to the growth of the World
Wide Web (WWW) and exploding popularity of the Internet that has
created a new much large scale opportunity for distributed
computing. As a matter of fact, millions of desktop PCs are
connected to wide-area networks both in the enterprise and in the
home. The exploitation of idle cycles on pervasive desktop PC
systems has recently received much attention from the scientific
community. This new platform for high throughput applications is
called Desktop Grids . The details of this platform and the relative
problems will be described in the next section.

 II Desktop Grids

The world's computing power and disk space is no longer
primarily concentrated in supercomputer centers and machine
rooms, but is distributed in hundreds of millions of personal
computers and game consoles belonging to the general public.
Desktop Grids uses these resources to do scientific supercomputing.
The number of Internet-connected PCs is indeed growing rapidly,
and is projected to reach 1 billion by 2015. Together, these PCs
could provide many PetaFLOPs of computing power. The public
resource approach applies to storage as well as computing. If 100
million computer users each provide 10 Gigabytes of storage, the
total (one Exabyte, or 1018 bytes) would exceed the capacity of any
centralized storage system. This paradigm enables previously
infeasible research, encourages public awareness of current
scientific research, catalyzes global communities centered around
scientific interests, and gives the public a measure of control over
the directions of scientific progress.

Public-resource computing emerged in the mid-1990s with two
projects, namely the Great Internet Mersenne Prime Search(GIMPS)
and Distributed net. In 1999 another project, called SETI@home,
attracted millions of participants worldwide, providing a sustained

processing rate of over 70 TeraFLOPS (in contrast, the largest
conventional supercomputer at that time, the NEC Earth Simulator,
provided about 35 TeraFLOPs).

SETI@home is a scientific experiment that uses Internet-
connected computers
in the Search for Extraterrestrial Intelligence (SETI), Desktop Grid
and Grid computing share the goal of better utilizing existing
computing resources. However, there are profound differences
between the two paradigms. As a matter of fact, Grid computing
involves organizationally-owned resources: supercomputers,
clusters, and PCs owned by universities, research labs, and
companies. These resources are centrally managed by IT
professionals, are powered on most of the time, and are connected
by full-time, high-bandwidth network links. Furthermore, there is a
symmetric relationship between organizations: each one can either
provide or use resources. In contrast, Desktop Grids involve an
asymmetric relationship between projects and participants. Projects
are typically small academic research groups with limited computer
expertise and manpower. Most participants are individuals who own
Windows, Macintosh and Linux PCs, connected to the Internet by
telephone or cable modems or DSL, and often behind network-
address translators (NATs) or firewalls. The computers are
frequently turned off or disconnected from the Internet. Participants
are not computer experts, and participate in a project only if they are
interested in it and receive incentives such as credit and
screensaver graphics. Projects have no control over participants,
and cannot prevent malicious behavior.

A second difference is that, Grid computing has many
requirements that Desktop Grid computing does not. A Grid
architecture must accommodate many existing commercial and
research-oriented academic systems, and must provide a general
mechanism for resource discovery and access. In fact, it must
address all the issues of dynamic heterogeneous distributed
systems, an active area of Computer Science research for several
decades. This has led to architecture such as Open Grid Services
Architecture (OGSA) , which achieves generality at the price of
complexity and, to some extent, performance.

In contrast, the main characteristic of Desktop Grid systems is
the unobtrusiveness because the resource used are installed and
designed for purposes other than distributed computing (e.g.
desktop word processing, web information access, spreadsheet,
etc.), thus the resource must be exploited without disturbing their
primary use. Moreover, the machine including its data, hardware,
and processes must be protected from a misbehaving Desktop Grid
applications. Analogously, the application's executable, input, and

output data, which may be proprietary, must be protected from user
inspection and corruption.

As cited in the previous section, another requirement is
concerned with scalability: Desktop Grids must scale to the 1,000's,
10,000's, and 100,000's of desktop PC's deployed in enterprise
networks. Systems must scale both upward and downward
performing well with reasonable effort at a variety of system scales.
With thousands to hundreds of thousands of computing resources,
management and administration effort in a Desktop Grid cannot
scale up with the number of resources. Desktop Grid systems must
achieve manageability, that is the systems should provide tools for
installing and updating users easily, and tools for managing
applications and resources, and monitoring their progress.
Finally, the last two requirements essentially for any Desktop Grid
systems are efficiency (the system must exploit all the idle resource
available) and robustness: the system must be tolerant of both
server failure (for example, data server crashes) and user failure (for
example, the user shutting off his/her machine). Conventionally, the
term failure refers to a defect of hardware or software. We use the
term failure broadly to include all causes of task failure, including not
only failure of the host's hardware or software, but also, for example,
keyboard/mouse activity that causes the user to kill a running task.

III Desktop Grid platforms

In this section, we present a overview of four representative
Desktop Grid projects: BOINC, Entropia, XtremWeb and OurGrid.

1. Berkeley Open Infrastructure for Network Computing

BOINC (Berkeley Open Infrastructure for Network Computing)
is an open source platform for Desktop Grid computing. BOINC is
being developed at U.C. Berkeley Spaces Sciences Laboratory by
the group that developed and continues to operate SETI@home.
BOINC's general goal is to advance the Desktop Grid computing

paradigm by encouraging the creation of many projects and a large
fraction of the world's computer owners to participate in one or more
projects.
A BOINC project corresponds to an organization or research group

that does Desktop Grid computing. It is identi_ed by a single master
URL, which is the home page of its web site and also serves as a
directory of scheduling servers. Participants register with projects. A
project can involve one or more applications, and the set of
applications can change over time. The server complex of a BOINC
project is centered around a relational database that stores
descriptions of applications, platforms, versions, tasks, results,
accounts, teams, and so on. Server functions are performed by a set
of web services and daemon processes: scheduling servers handles
RPCs from clients; they issue work and handle reports of completed
results.
Data servers handle file uploads using a certificate-based
mechanism to ensure that only legitimate _les, with prescribed size
limits, are uploaded. File downloads are handled by plain HTTP.
BOINC provides tools (Python scripts and C++ interfaces) for
creating, starting, stopping and querying projects adding new
applications, platforms, and application versions, creating tasks, and
monitoring server performance. Moreover, BOINC is designed to be
used by scientists, not by system programmers or IT professionals;
the tools are simple and well-documented, and a full-featured project
can be created in a few hours.

To prevent erroneous computational results, BOINC uses a
technique called redundant computing. In particular, a project can
specify that N results should be created for each task. Once M _ N
of these have been distributed and completed, an application-
specific function is called to compare the results and possibly select
a canonical result. If no consensus is found, or if results fail, BOINC
creates new results for the task, and continues this process until
either a maximum result count or a timeout limit is reached.

As cited in the previous section, scalability is another problem
that must be consider in Desktop Grid computing projects. Specially,
in contest where we may have millions of participants and a
relatively modest server complex. As a matter of fact, if all the
participants simultaneously try to connect to the server, a disastrous
overload condition will generally develop. BOINC has a number of
mechanisms to prevent this. In particular, all client/server
communication uses exponential backoff in the case of failure. Thus,
if a BOINC server comes up after an extended outage, its
connection rate will be the longterm average. The exponential
backoff scheme is extended to computational errors as well. If, for
some reason, an application fails immediately on a given host, the
BOINC client will not repeatedly contact the server; instead, it will

delay based on the number of failures. BOINC is being used by
several existing projects (SETI@home, Predictor@ home,
climateprediction.net) and by several other projects in development.
Many areas of the BOINC design are incomplete. For example,
some projects require e_cient data replication: Einstein@home uses
large (40 MB) input _les, and a given input _le may be sent to a
large number of hosts (in contrast with projects like SETI@home,
where each input file is different). In its initial form, Einstein@home
sends the _les separately to each host, using a system of replicated
data servers. In order to improve the effciency of the data replication,
the BOINC's team is planning to exploit a mechanism such as
BitTorrent based on peer-to-peer communication.

2. Entropia

Key advantages of the Entropia system are the ease of
application integration and a new model for providing security and
unobtrusiveness for the application and client machine. To provide
rapid application integration, Entropia uses a binary modification
technology that obviates access to the applications source code
while providing strong security guarantees and ensuring unobtrusive
application execution. Other systems require developers to modify
their source code to use custom APIs or simply rely on the
application to be well behaved and provide weaker security and
protection.

However, it is not always possible to get access to the
application source code (especially for commercial applications) and
maintaining multiple versions of the source code can require a
significant continuous development effort. As to relying on the good
intentions of the application programmers, the experiments show
that even commonly used applications in use for quite some time
can at times exhibit anomalous behavior. Entropia's approach
ensures both a large base of potential applications and a high level
of control over the application's execution.

The Entropia system addresses the requirements described in
Section by aggregating the raw desktop resources into a single
logical resource. This logical resource is reliable, secure and
predictable despite the fact that the underlying raw resources are
unreliable (machines may be turned off or rebooted), insecure
(untrusted users may have electronic and physical access to
machines) and unpredictable (machines may be heavily used by the
desktop user at any time). This logical resource provides high
performance for applications through parallelism while always
respecting the desktop user and his or her use of the desktop
machine. Furthermore, this logical resource can be managed from a

single administrative console. Addition or removal of desktop
machines from the Entropia system is easily achieved, providing a
simple mechanism to scale the system as the organization grows or
as the need for computational cycles grows.

To support the execution of a large number of applications,
and to support the execution in a secure manner, Entropia employs
a proprietary binary sandboxing techniques that enables any Win32
application to be deployed in the Entropia system with no
modifications and no special system support. End-users of the
Entropia system can use their existing Win32 applications and
deploy them on the Entropia system in a matter of minutes.

This is significantly different than other early large-scale
distributed computing systems like SETI@home and other
competing systems that require rewriting and recompiling of the
application source code to ensure safety and robustness.

Entropia's system architecture consists of three layers: a
physical node management layer (that provides basic
communication and naming, security, resource management, and
application control), resource scheduling (that provides resource
matching, scheduling and fault tolerant), and job scheduling. This
architecture provides a modularity that allows each layer to focus on
a smaller number of concerns, enhancing overall system capability
and usability. This system architecture provides a solid foundation to
meet the technical challenges as the use of distributed computing
matures supporting the broadening the problems supportable by
increasing the breadth of computational structure, resource usage,
and ease of application integration. The implementation includes
innovative solutions in many areas, but particularly in the areas of
security, unobtrusiveness, and application integration. The system is
applicable to a large number of applications such as virtual
screening, sequence analysis, molecular modeling, and risk
analysis. Unfortunately, it seems that there is no future for Entropia:
this system is not longer maintained.

3. XtremWeb

XtremWeb is designed to provide a Global Computing
framework for resolving different applications, on projects lead by
institutions, commercial firms or open source communities.

The XtremWeb system may be seen as several sets of
workers (ranging from workstations to PCs or even handheld
devices) and servers (ranging from a stand alone PC to cluster of
servers or distributed and specialized servers).

The XtremWeb system provides solutions to the desktop
distributed computing challenges discussed in Section 1.2. In
particular, XtremWeb targets high performance. Thus, although the
workers protection suggests execution in a virtual environment,
typically sandboxed Java bytecode, performance dictates that the
end-user code should remain native. Like many other Global
Computing systems, XtremWeb uses native code execution.

However, in contrary to them, XtremWeb allows any worker to
execute different and downloadable applications. Currently, to
become downloadable, the applications follow an ad-hoc verification
process .Another important aspect is the unobtrusiveness. The user
decides when XtremWeb may run a computation and what
resources the computation may use. The availability of a given
machine depends on the user presence (detected through the
keyboard or mouse activity), the presence of noninteractive tasks
(detected through the CPU, memory and I/O usage) and other
conditions like night and day for instance. Resource utilization is
continuously monitored by the worker. An interface to the resources
is provided by Operating System features, e.g. the /proc directory for
the Unix OSes. A user de_nes an availability policy simply by
indicating for each resource a threshold above which the computer is
usable for a Global Computation and a threshold that provokes the
interruption of the computation. Controlling the resources used by
the Global Computation can be tuned.

Besides the unobtrusiveness, the usability is another aspect
that must be considered in a Desktop Grid system. As a matter of
fact, in XtremWeb, the worker software comes with different tools to
enforce its usability. The installation process follows two ways:
installation on a single workstation and installation on a local area
network. In both case it does not require the user to have special
root privileges.
Finally, in order to provide the scalability, XtremWeb aims at scaling
up to several hundreds of thousands of workers with corresponding
performance improvement. This scalability goal is ensured by
several design choices. First, the server throughput is increased by
using cluster of servers and a meta server. Second, load balancing
within the cluster of servers can be achieved through an external
tool, able to sustain high throughput, typically via mechanisms
supported by OS kernel (such as the Linux Virtual Server) or DNS
aliases. Third, specialized servers can be dedicated to collecting the
results so as to reduce the traffic to the root servers. Summary, the
XtremWeb architecture exhibits several properties. By supporting
native execution, XtremWeb can be used by institutions for setting
up their own Global Computing system based on their legacy
applications. Servers architecture enables scalability and fault
tolerance. Future work will develop extensive testing on the

XtremWeb architecture to evaluate quantitatively its characteristics
and limits. Tools have been developed to enforce the usability of the
platform. Installation and administration over a LAN can be done in
an automated way. The Web interface and contest between teams
of users is an attractive way to involve the public. The first version of
the worker software has been released for public download in
November 2000. The Future work for XtremWeb is to find the
relevant performance parameters that define and characterize a
parallel architecture built through the Global Computing model.

4. OurGrid

The OurGrid system is defined as an open, free-to-join,
cooperative grid which labs donate their idle computational
resources in exchange for accessing other labs' idle resources when
needed. The OurGrid scientists have implemented a system fast,
simple, scalable and secure for Bag-of Tasks (BoT) grid applications
(details about BoT will be discussed in the next section). In the rest
of this section, we described how the goals of OurGrid have been
implemented.

First of all, the OurGrid respects the fundamental
characteristic of an Desktop Grid system: it must be non-intrusive,
that is a local user has
priority for local resources. As a matter of fact, the submission of a
local
job kills any foreign jobs that are running locally. Another key
requirement
for Desktop Grids is scalability. OurGrid is scalable both in the sense
that it supports thousands of labs, and that joining the system is
straightforward.

OurGrid is based on a peer-to-peer network, where each labs
in the Grid correspond to a peer in the system. The main problem
using a peer-to-peer system is that the performance could be
compromised by freeriders: a peer that only consume resources,
never contributing back to the community.

In order to incentive peers to cooperate, and consequently
discourage the freeriders, OurGrid uses a Network of Favors: a favor
is the allocation of a processor to a peer that request it, and the
value of that favor is the value of the work done for the requesting
peer. Each peer A keeps a local record of the total value of the
favors it has given to and received from each peer B. The rationale
is that each peer autonomously prioritize donations to the peer to
whom the owe most favors, motivating cooperation.

Since a given lab will commonly run tasks from other
unknown labs, the security is also a fundamental aspect especially in

these days with so many software vulnerabilities. For this reason,
OurGrid uses Sandboxing Without A Name (SWAN) to protect local
resources from foreign unknown code. SWAN is a solution based on
the Xen virtual machine that isolates the foreign code into a
sandbox, where it cannot access local data nor use the network.

Finally, OurGrid has achieved the goals regarding simplicity
and speed using MyGrid: a personal broker that performs application
scheduling and provides a set of abstractions that hide the Grid
heterogeneity from the user.

A efficient scheduler needs information about application
(such as estimated execution time) and resources (processor speed,
network topology, load, and so on). However, it is difficult to obtain
accurate information in a system as large and widely dispersed as a
Grid. MyGrid's first scheduler is Workqueue with Replication(WQR):
a scheduling algorithm that uses no information about tasks or
machines. In order to recover from bad allocations of tasks to
machines (which are inevitable, since WQR uses no information),
this algorithm uses replication. WQR will be described with more
details in chapter V .

However, WQR does not take data transfer into account. For
this reason, MyGrid provides another scheduling algorithm called
Storage Affinity : it does not use dynamic, hard-to-obtain information
as other Grid scheduler proposed. The idea is exploit data
reutilization to avoid unnecessary data transfers. In particular, given
a task the scheduler is able to calculate the storage affinity with
respect to each other site. A site has a good storage affinity
considering a particular task, if it contains data necessary to execute
the task, that is it is not necessary to transfer data in the remote host
in order to run the task. Since Storage Affinity does not use dynamic
information, it can make "bad" assignment between tasks and
resources. In order to recover from bad assignment, also Storage
Affinity uses task replication strategy similar to WQR. In summary,
OurGrid has three main components: the OurGrid peer, the MyGrid
broker and the SWAN security service. Figure 1 shows them all,
depicting the OurGrid architecture. OurGrid is in production since
December 2004 and its current status can be seen at
http://status.ourgrid.org.

Figure 1.

IV Classification of scheduling algorithm
categories

Scheduling algorithms

Knowledge free Knowledge based

On-line Batch
On-line Batch

Fault
tolerant

No
fault

tolerant

Fault
tolerant

No
fault

tolerant

Fault
tolerant

No
fault

tolerant

Fault
tolerant

No
fault

tolerant

1. Fault-tolerant scheduling

A Grid may potentially encompass thousands of resources,
services, and applications that need to interact in order for each of
them to carry out its task. The extreme heterogeneity of these
elements gives rise to many failure possibilities, including not only
independent failures of each resource, but also those resulting from
interactions among them.

Moreover, resources may be disconnected from a Grid
because of machine hardware and/or software failures or reboots,
network misbehaviors, or process suspension/abortion in remote
machines to prioritize local computations. Finally, configuration
problems or middleware bugs may easily make an application fail
even if the resources or services it uses remain available. In order to
hide the occurrence of faults, or the sudden unavailability of
resources, fault-tolerance mechanisms (e.g., replication or
checkpointing-and-restart) are usually employed.

2. Knowledge-based and knowledge-free scheduling

The decisions a scheduler makes are only as good as the
information provided to it. Many theoretical schedulers assume
one has 100 percent of the information needed, at an extremely
fine level of detail, and that the information is always correct.
Unfortunately, as discuss later, this scenario is overly unrealistic.
In general we have only the highest level of information. For
example, it may be known that an application needs to run on
Linux, will produce output _les somewhere between 20 MB and
30 MB, and should take less than three hours but might take as
long as five. Or, it may be known that a machine is running Linux

and has a _le system located at certain address that ten minutes
ago had 500 MB free, but there is no information about what will
be free when one's application runs there.
Usually, the information regards the tasks (execution time,
software and hardware requirements, etc) and the resources
(computational power, availability, etc). In general, the scheduling
algorithms assume a partial knowledge, and use it to calculate a
sort of utility value for each assignment task/resource. With this
value the scheduler is able to valuate how good is each
assignment and decides how make the scheduling decisions. In
some case, the goodness of an assignment could be decided also
considering the cost to use a particular resource. As matter
of fact, if the resources are freely usable any user could have an
antisocial behavior (i.e., a single user can occupy the whole
Computation Grid with his tasks). To avoid this situation, the
scientific community has proposed some approaches based on
micro economy theories.

3. On-line and batch-mode scheduling algorithms

Independently of the amount of information about resources
and task knew, the scheduling policies can be grouped into two
categories: on-line and batch mode. In the on-line mode, a task is
assigned to a machine as soon as it arrives at the scheduler and
this decision is not changed once it is computed.

Conversely, in the batch mode, tasks are not mapped onto
the machines as they arrive; instead they are collected into a set
that is examined for mapping at prescheduled times called
mapping events. In the next section, we provide some example to
put in evidenced the differences between on-line mode and batch
mode scheduling.

V Examples

In this section, examples will be taken from the scientific
literature to demonstrate their relationship to one another with
respect to the taxonomy detailed in previous section.

1. Knowledge-free scheduling – WQR algorithm.

WQR is an extension of the classical WorkQueue (WQ)
scheduling algorithm in which tasks in a bag are chosen in an
arbitrary order and are sent to the processors as soon as they
become available. WQR adds task replication to WQ in order to
cope with task and host heterogeneity, as well as with dynamic
variations of the available resource capacity due to the competing
load caused by other Grid users. WQR works very similarly to WQ,
in the sense that tasks are scheduled the same way. However, after
the last task has been scheduled, WQR assigns replicas of already-
running tasks to the processors that become free (in contrast, WQ
leaves them idle). Tasks are replicated until a predefined replication
threshold is reached. When a tasks replica terminates its
execution,its other replicas are canceled.

By replicating a task on several resources,WQR increases the
probability of running one of the instances on a faster machine,
thereby reducing task completion time. WQR performance are
equivalent to solutions that require full knowledge about the
environment, at the expenses of consuming more CPU cycles.

Figure 3 shows in detail the WQR scheduling policy. This
algorithm needs some data structures and functions. In particular, it
uses two data structures: a queue of tasks to complete (represented
by letter Q, line 2), a set of resources that compose our
Computational Grid (represented by letter R, line 3) moreover, WQR
uses a variable RPLFCT that represents the replication threshold
(line 4) and four functions: RPL(t) (that returns the number of
replicas created for task t, line 5), getRscFree(R) (that returns a
identi_er of a resource available, line 6), deleteInstance(t) (that
deletes all running instances of task t, line 7) and, _nally, assign(r,t)
(that assigns task t to resource r, line 8). The algorithm starts
checking the queue of tasks Q: if the queue of the tasks is not empty
(line 10), the algorithm starts waiting (line 11) for two type of events:
RscF ree or TaskDone. The _rst event (line 12) means that there is
at least a resources idle, so it is ready to execute atask. Thus, the
scheduler selects this resource r (line 13) and extracts a task t on
the top of the queue Q (line 14). If the number of replicas created for
task t is smaller than the replication threshold (line 15), a new
instance of task t is created and submitted to resource r (line 16) and
task t is inserted again in the queue Q (line 17). Conversely, if the
event was TaskDone (line 19), all the running instances of task done
are deleted (line 20). Thus, the hosts become ready to execute other
tasks.

1: - data structures and functions -
2: Q {is the queue of the tasks (Qi is the ith task)}

3: R {is the set of resources (Ri is the ith resource)g
4: RPLFCT {is the maximum number of available replicas for each task}
5: RPL(t) {returns the number different instances provided}
6: getRscFree(R) {returns a resource available}
7: deleteInstances(t) {deletes all running instances of task t}
8: assign(r,t) {assigns task t to resource r}
9: - WQR algorithm -
10: while Q is not empty do
11: wait(event)
12: if (event = = "RscF ree") then
13: r = getRscFree(R); {r is a resource available}
14: t = pop front(Q); {extracts the first task t of the queue}
15: if (RPL(t) < RPLFCT) then
16: assign(r,t); {assigns task t to resource r}
17: push back(Q,t); {adds task t to the end of the queue}
18: end if
19: else {event = = "TaskDone"}
20: deleteInstances(t); {deletes all running instances of task t}
21: end if
22: end while

Figure 3: WQR

2. On-line mode scheduling

In the on-line mode scheduling, the scheduler must select the
best resource given a particular task. The resource selection is done
ordering the hosts in the ready queue according to some criteria
(e.g., by clock rate, by the number of cycles delivered in the past)
and to assign tasks to the "best" hosts first. This method is also
called resource prioritization.
The simplest on-line scheduling policy is First-Come-First-Serve
(FCFS) where the scheduler selects the first host in the ready
queue. Although this policy is not accurate since it does not consider
any kind of information concerning either tasks or hosts, FCFS is
often used also in important Desktop Grid projects like XtremWeb
and BOINC. This is due to the fact that, in a dynamic and extremely
heterogeneous environment like Grid it is difficult to obtain such
information. Moreover many works, as described in, considers that
when the number of tasks is about equal or greater than the number
of hosts, there is just a little benefit of prioritization over FCFS. This
can be explained considers that the most capable hosts tended to
request tasks the most often, and so FCFS performed almost as well
as any of the prioritization heuristic proposed in the scientific

literature. Many of these scheduling policies are based on the
classical on-line scheduling algorithms: minimum completion time
(MCT), minimum execution time (MET), switching algorithm (SA), k-
percent best (KPB) and opportunistic load balancing (OLB).
For example, the work in [16] describes three methods for resource
prioritization using different levels of information about the hosts
from virtually no information to comprehensive historical statistics
derived from trace for each host. In particular, for the PRI-CR
method, hosts in the server's ready queue are prioritized by their
clock rates. Similar to PRI-CR, PRICR- WAIT sorts hosts by clock
rates, but the scheduler waits for a fixed period of 10 minutes before
assigning tasks to hosts. The rationale is that collection a pool of
ready hosts before making the assignments can improve host
selection. Finally, the third method called PRI-HISTORY uses
dynamic information, i.e. history of a host's past performance to
predict its future performance. All the results report in [16] are based
on scenarios where the number of tasks is comparable with the
number of resources. We believe that di_erent scenarios where the
number of tasks can be greater than the number of machines should
be evaluated.
Other works considers the performance of prioritization methods
limited
by the choice of the slowest hosts. For this reason they proposed
other
methods based on the exclusion of some hosts and never use them
to run application tasks (these methods are called resource
exclusion). Filtering can be based on a simple criterion, such as
hosts with clock rates below some threshold. Often, the distribution
of resource clock rates is so skewed that the slowest hosts
signi_cantly impede application completion, and so excluding them
can potentially remove this bottleneck. A more sophisticated
resource exclusion strategy consists in removing hosts that would
not complete a task, if assigned to them, before some expected
application completion time. In other words, it may be possible to
obtain an estimate of when the application can reasonably complete,
and not use any host that would push the application execution
beyond this estimate. The advantage of this method compared to
blindly excluding resources with a fixed threshold is that it should not
be as sensitive to the distribution of clock rates. One of the
scheduling algorithm belong at this category is real-time scheduling
advisor (RTSA). RTSA is a system for scheduling soft real-time
tasks using statistical predictors of host load. The system presents to
a user the confidenceintervals for the running time of a task. These
confidence intervals are formed using time series analysis of
historical information about host load. However, the work assumes a

homogeneous environment and disregardtask failure caused by user
activity, thus its relevance on Desktop Grids is questionable.
The work described is the most relevant in terms of Desktop Grid
scheduling. The author investigates the problem of scheduling
multiple independent compute bound applications that have soft-
deadline constraints on the Condor Desktop Grid system. Each
"application" in this study consists of a single task. The issue
addressed in the paper is how to prioritize multiple applications
having soft deadlines so that the highest number of deadlines can be
met. The author uses two approaches. One approach is to schedule
the application with the closest deadline first. Another approach is to
determine whether the task will complete by the deadline using a
history of host availability from the previous day, and then to
randomly choose a task that is predicted to complete by the
deadline. The author finds that a combined approach of scheduling
the task that is expected to complete with the closest deadline is the
best method. Although the platform model in that study considers
shared and volatile hosts, the platform model assumes that the hosts
have identical clock rates and that the platform supports check-
pointing. So, the study did not determine impact of relatively slow
hosts or task failures on execution for a set of tasks; likewise, the
author did not study the effect of resource prioritization (e.g.,
according to clock rates) or resource exclusion. Batch mode
scheduling In the batch mode scheduling, the scheduling
approaches are typically more complicated with respect to the
previous situation. As a matter of fact, the scheduler, besides the set
of resources, knows the set of tasks and it can consider any
combination of task/resource. Unfortunately, considering all possible
combinations in order to decide the best set of assignments is a
wellknown NP-complete problem if throughput is the optimization
criterion . For this reason, the batch mode scheduling algorithms
proposed in the scienti_c literature provides suboptimal solutions
such as Min-Min, Max-min and Su_erage (all described in detail in).
The most relevant batch mode scheduling policy are based on the
classic algorithm cited above. For example, Xsufferage is an
extension of Sufferage policy that is able to exploit file locality issues
without any apriori analysis of the task-file dependence pattern. The
idea is that if a file required by some task is already present at a
remote cluster, that task would "suffer" if not assigned to a host in
that cluster. The Sufferage's value would then be a simple way of
capturing such situations and ensuring maximum file re-use.
This is somewhat reminiscent of the idea of task/host affinities
introduced in [31], where some hosts are better for some tasks but
not for others. The problem of this algorithm regards the necessity to
know many information to calculate the completion time of the tasks.
In particular, it needs to know the HostSpeed (a measure of the host

speed), the HostLoad (the load of the host due to the local
processes) and the TaskSize (the completion time of a task in a host
with HostSpeed=1 and HostLoad=0).
Moreover, as we have cited above, some scheduling algorithm
needs an extremely fine level of detail such as First-order Prediction-
based Dynamic FPLTF (FP Dynamic FPLTF) , abbreviated as FP.
FP is a predictionbased scheduling algorithm that works as FPLTF
except that it needs the host's latest two load records. The scheduler
uses these two records to reconstruct an approximated hosts
loading model to predict the hosts's speed in the future based on the
linear function. FP is able to achieve good performances but, it
needs a level of detail about information of tasks and hosts that is
overlay unrealistic to obtain in a Computational Grid, for the reasons
previously discussed.

3. Fault-tolerant scheduling

The scheduling approaches discussed above do not consider
the occurrence of faults, but as we have just observed, Grid
environments are prone of failures. Task failures near the end of the
application, and unpredictably slow hosts can cause major delays in
application execution. Many solutions propose the replication of the
tasks on multiple hosts, either to reduce the probability of task failure
or to schedule the application on a faster host. Replication a task
may increase the chance that at least one task instance will be
completed. One of these proposals is WorkQueue with Replication
(WQR): a knowledge-free scheduling algorithm that adds task
replication to the classical Workqueue(WQ) scheduler. The
beginning of the algorithm execution is the same as the simple
Workqueue and continues the same until the bag of tasks becomes
empty. At this time, in the simple Workqueue, hosts that _nish their
tasks would become idle during the rest of the application execution.
Using the replication approach, these hosts are assigned to execute
replicas of tasks that are still running. Tasks are replicated until a
prede_ned maximum number of replicas is achieved. When a task
replica _nishes, its other replicas are canceled. This policy has the
drawback of wasting CPU cycles (due to the replicas that do not
contribute to the completion of the tasks), which could be a problem
if the Desktop Grid is to be used by more than one application.
Conversely of these knowledge-free schedulers, the scientific
literature has proposed fault-tolerant schedulers that combines
replication and knowledgebased scheduling. For example,

Distributed Fault-Tolerant Scheduling (DFTS) is an on-line
scheduling policy that uses job replication strategy and it considers
available suffcient information to estimate the run-time of the task. In
particular, when a job arrives, DFTS chooses a set of n candidates
sites for job execution and orders them for an estimate of the job
completion time. If the desirable replication threshold is greater than
n, DFTS reserves a set of resources equal to the number of
unscheduled job replicas. If a job successfully completes, DFTS
sends releases message to each site it had reserved such that these
sites can be used for running other jobs. The experimental results of
DFTS show that performances degrade gracefully in the presence of
failures, but it does not consider the amount of waste cycles due to
the useless replicas.

Besides the completion time and the number of the replicas
desired, other scheduling policies speci_ed also a minimum
replication threshold. For example, in the Fault Tolerant Scheduling
algorithm (FTSA), along with the job, two values are specified by the
user: the number of desired replicas n and the replication threshold
k, where k _ n. FTSA picks the n best hosts (ordered by an estimate
of the job completion time) and send them the replicas of the task.
The system must ensure that k replicas are running. That is, the
number of replicas may fall below n due to replica failure, but not
below k. Although FTSA could achieve good performance even in
presence of fault, it is not clear explained how the user should
specify the values of n and k.

Finally, task checkpointing is another means of dealing with
task failures since the task state can be stored periodically either on
the local disk or on a remote checkpointing server; in the event that
a failure occurs, the application can be restarted from the last
checkpoint. In combination with checkpointing, process migration
can be used to deal with CPU unavailability or when a "better" host
becomes available by moving the process to another machine. For
example, the EXCL-PRED-CHKPT is a scheduling policy that
assumes a checkpoint frequency equals to 2.5 minutes (interval
between two checkpoints) and the cost of checkpointing is 15
seconds (time to save/retrieve a checkpoint to/from a remote host).
In this work, the authors note that the poor performance of EXCL-
PRED-CHKPT is due to the fact that a task is not reassigned when it
is assigned to a slow host or when the host becomes unavailable for
task execution. Moreover, the authors consider that remote
checkpointing or process migration is most likely infeasible in
Internet environments, as the application can often consume
hundreds of megabytes of memory and bandwidth over the Internet
is often limited.

4. Economic models

The scheduling policies previously described consider the
resources in Computational Grid freely usable without any
constraints. Unfortunately, if constraints are not put on how the
resource on how resources are used, they may be misused. For
instance, if all resources can be used without any limitation, situation
in which all task are submitted to the best resources (e.g., the
resource that has the best performance and availability) may arise,
thus leaving idle other resources. Moreover, antisocial behaviors,
where a user submits a replica of its application on all the resources,
with the aim of speculatively exploit them to reduce the execution
time of his application, may arise as well. In order to avoid these
phenomena, a possible solution consists in associating a cost to
each resource, and a budget to each user/application. When an
application is run on a resource, a proper amount of (virtual) money
is allocated to that application, and is subtracted from the total
budget to account for the usage of the resource. The so-called
economic approach to resource management has received great
attention in the recent Grid literature, where both scheduling
algorithms taking into account resource costs and application
budgets , and automatic approaches for the computation of resource
prices , have been proposed.

Some of the commonly used economic models that can be
employed for managing resources environment, include: the
commodity market model, the posted price model, the bargaining
model, the tendering/contract-net model, the auction model, the bid-
based proportional resource sharing model, the
community/coalition/bartering model and the monopoly and
oligopoly. One example of commodity market model is the Nimrod/G
resource broker: a global resource management and scheduling
system shown on Figure 2, that supports deadline and economy-
based computations in Grid computing environments for parameter
sweep applications. In particular, in the Nimrod/G application level
resource broker, three adaptive algorithms for scheduling are
incorporated: (i) time minimization, (ii) cost minimization and (iii)
none minimization. The time minimization algorithm attempts to
complete an experiment as quickly as possible, within the available
budget.

Figure.2 Nimrod/G resource broker

The cost minimization algorithm attempts to complete an

experiment with the lowest cost as possible within the deadline.
Finally, the none minimization attempts to complete the experiment
within the deadline and cost constraints without minimizing either.
The price of each resource has been Figure 2: Nimrod/G resource
broker established dynamically using GRid Achitecture for
Computational Economy(GRACE) but the results discussed are
based on an arbitrary assignment for demonstrate purpose only.
Thus, it is di_cult to evaluate the effective performance of this
scheduling algorithm. Also the researchers of the University of
California at Berkeley propose a market-based approach to cluster
resource management based on the notion of a Computational
Economy. In this model, resource rights for a shared resource are
encapsulated as tickets. A resource is represented by a total of T
tickets. An application holding t tickets competing for use of that
resource obtains a share of t=T of the resource. The main
contribution of this work is the discussion about the systems that
implements marketbased ideas to cluster resource management.
The models studied (Ferguson, Spawn, Popcorn, Mariposa, SC
centers) apply di_erent interpretation of tokens distribution and what
resources share, but the main observation regards that most of the
work so far has focused mainly on the economic front-end and layer.
Very little attention has been paid to the end-to-end problem:

An approach that is not based on the price of the resources presents
a baseline architecture for bootstrapping economies based on peer-
to-peer bartering. Bartering strategies specify how peers negotiate
exchange rates for peering and how peers execute the peering
protocol. Negotiating exchange rates involves determining what
amount of resources a peer X exchanges with a peer Y as part of
the peering and how many such exchanges will occur. One simple
strategy based on reciprocity that has proven to be remarkably
robust and e_ective against a wide range of competing strategies is
TIT FOR TAT . TIT FOR TAT is thestrategy of beginning with
cooperation and, thereafter, doing whatever the other peer did in the
previous round. It is simple, encourages cooperation, punishes
defection (but is forgiving), and in practice outperforms virtually all
competing strategies in a number of situations. Unfortunately, the
work explains the theoretical aspects that should guaranteed good
performance of the model proposed, but no results are presented to
evaluate this bartering model.
.

VI Analysis

1. Knowledge-base algorithm versus knowledge-free algorithm

Obtain information about the status of the resource is often
difficult, especially in Grid environments. This is due to some
characteristics that are intrinsic to Grids such as heterogeneity and
volatility of the resources. Moreover, in order to achieve good
performance, it is necessary to know the status of the resources in
the next future, because just monitoring the resource (when it is
possible) is not enough. The scientific literature has proposed tools
able to obtain dynamic information such as host load and network
bandwidth with some good results. Unfortunately these are only
initial encouraging results, thus the knowledge-free scheduling
algorithms are still popular in Grid environments. On-line scheduling
versus batch mode scheduling The main di_erence, in terms of
performance, between on-line scheduling and batch mode
scheduling regards principally the arrival rate. When the arrival rate
is low, machines may be ready to execute a task as soon as it
arrives at the scheduler. Therefore, it may be bene_cial to use the
scheduler in the on-line mode so that a task does not need to wait

the next scheduling event to begin its execution. In batch mode, the
scheduler considers a bag of tasks for matching and scheduling at
each scheduling event. This enables the scheduling algorithm to
possibly make better decisions, because the scheduler have the
resource requirement information for all tasks, and know about the
actual execution times of a larger number of tasks (as more tasks
might complete while waiting for the scheduling event). When the
task arrival rate is high, there will be a su_cient number of tasks to
keep the machines busy in between the scheduling events, and
while an assignment is being computed.

2. Fault-tolerant scheduling versus no fault-tolerant scheduling

Although scheduling and fault tolerance have been
traditionally considered independently from each other, there is a
strong correlation between them. As a matter of fact, each time a
fault-tolerance action must be performed, i.e. a replica must be
created or a checkpointed job must be restarted, scheduling decision
must be taken in order to decide where these jobs must be run, and
when their execution must start. A scheduling decision taken by
considering only the needs of the faulty task may thus strongly
adversely impact non-faulty jobs, and vice versa. Therefore,
scheduling and fault tolerance should be jointly addressed in order to
simultaneously achieve fault tolerance and satisfactory performance.

VII Conclusions

The intention of this chapter has been to provide the related work in
the area of resource management. This has been done through the
presentation of taxonomy on the scheduling policies used in Grid
computing. From our study, we can assert that usually the
scheduling literature has considered efficiency and robustness as
orthogonal aspects, that is their interactions are not taken into
account when scheduling applications on Computational Grid.
Unfortunately, as already mentioned before, in Desktop Grids faults
may occur, and in this case the execution time of the applications
gets much larger, as there is the need to recover from the fault.
Consequently, there is the need of exploring scheduling strategies
that attempts to maximize application performance in face of
occurrence of faults.

For this reason, in the next chapters of this thesis, we propose a
novel fault-tolerant and knowledge-free scheduler based on the

WQR algorithm able to achieve performance better than alternative
scheduling strategies.

Bibliography

1) David P. Anderson. BOINC: A System for Public-Resource Computing and
Storage. Proceedings of the 5th IEEE/ACM International Workshop on Grid
Computing, 2004.

2) D. P. Anderson, J. Cobb, E. Korpela, M. Lebofsky, and D.Werthimer.
SETI@home: An experiment in public resource computing. Communications of the
ACM, Nov. 2002, Vol. 45 No. 11, pp. 56-61.

3) G. Fedak and C. Germain and V. N'eri and F. Cappello XtremWeb: A
Generic Global Computing System. In IEEE Int. Symp. on Cluster Computing and the
Grid, 2001.

4) N. Andrade, R. Santos, A. Andrade, R. Novaes, M. Mowbray, W. Cirne, and
F.V. Brasileiro. Labs of the World, Unite!!!. In , 2005.

5) B. Dragovic and K. Fraser and S. Hand and T. Harris and A. Ho and I. Pratt
and A.War_eld and P. Barham and R. Neugebauer Xen and the Art of virtualization.
In Proceedings of the ACM Symposium on Operating Systems Principles, 2003.

6) Elizeu Santos-Neto and Walfredo Cirne and Francisco Brasileiro and
Aliandro Lima Exploiting Replication and Data Reuse to E_ciently Schedule Data-
Intensive Applications on Grids. In 10th JSSPP, 2004.

7) D.P. da Silva, W. Cirne, and F.V. Brasileiro. Trading Cycles for
Information: Using Replication to Schedule Bag-of-Tasks Applications on
Computational Grids. In Proc. of EuroPar 2003, volume 2790 of Lecture Notes in
Computer Science, 2003.

8) H. Casanova, A. Legrand, and D. Zagorodnov et al. Heuristics for
Scheduling Parameter Sweeping Application in Grid Environments. In Proc. of
Heterogeneous Computing Workshop, IEEE CS Press, 2000.

9) M. Maheswaran and H.J. Siegel A Dynamic Matching and Scheduling
Algorithm for Heterogeneous Computing Systems. in Proceedings of the Seventh
Heterogeneous computing Workshop HCW '98, 1998.

10) J. H. Abawajy Fault-Tolerant Scheduling Policy for Grid Computing
Systems. in Proceedings of the 18th International Parallel and Distribuited Processing
Symposium (IPDPS'04), 2004.

11) J. Weissman and D. Womack. Fault Tolerant Scheduling in Distributed
Networks. Technical Report TR CS-96-10, Department of Computer Science,
University of Texas, San Antonio, Sept. 1996.

12) Derrick Kondo, Andrew A. Chien, Henri Casanova Resource
Management for Rapid Application Turnaround on Enterprise Desktop Grids.
Proceedings of Super Computing Conference, 2004.

13) R. Buyya and M. Murshed GridSim: A Toolkit for the Modeling and
Simulation of Distributed Resource Management and Scheduling for Grid Computing.
in the Journal of the Concurrency and Computation: Practice and Experience,vol. 14,
no. 13-15, pp. 1175-1220, Wiley Press, USA, 2002.

14) B.Chun and D.Culler Market-Based Proportional Resource Sharing for
Clusters. Technical Report CSD1092, University of California at Berkeley, January
2000.

15) R. Buyya, J. Giddy, and D. Abramson An Evaluation of Economybased
Resource Trading and Scheduling on Computational Power Grids for Parameter
Sweep Applications. Prooceedings of The Second Workshop on Active Middleware
Services (AMS 2000), 2000.

16) B.Chun, Y.Fu, A.Vahdat Bootstrapping a Distributed
Computational Economy with Peer-to-Peer Bartering. Workshop on
Economics of Peerto-Peer Systems, 2003

17) P. Francis, S. Jamin, V. Paxson, L. Zhang and D.F. Gryniewicz
and Y. Jin An Architecture for a Global Internet Host Distance Estimation
Service. In the proocedings of IEEE INFOCOM, 1999.

18) B. Lowekamp, N. Miller, T. Gross, P. Steenkiste, J. Subhlok and
D. Sutherland A resource query interface for network-aware applications. In
the Journal of Cluster Computing, 1999.

19) R. Wolski Dynamically forecasting network performance using the
network weather service. In the Journal of Cluster Computing, vol.1, no.1,
pp.119-132, 1998.

20) G. Woltman The great internet mersenne prime search

