
Trends in 
Distributed Applications and

Problem-Solving Environments

Author: Todor Nikolov

Date: July 2009

Supervisor: Prof. Daniel IOAN

Universitatea "Politechnica" din Bucureşti

Facultatea de Inginerie Electrica –CIEAC-LMN

Marie Curie Doctoral School in EE and CS – EST3 project 
Spl. Independenţei 313, RO-060042, Bucureşti ROMANIA

http://www.lmn.pub.ro/ Tel/Fax: (40 21) 311 8004,  (40 21) 316 95 71,
e-mail: lmn@lmn.pub.ro 



Contents

ABSTRACT 3

1. Introduction 4
1.1 Trends in Distributed Applications 6
1.2 The Need for New Approaches 7
1.3 Distributed, Parallel and Grid Computing 7

2. Problem-Solving Environments 10
2.1 Problem-Solving Environments. 10
2.2 Application Characteristics. 10

3. Influences of Grid Computing on Application Development 12
3.1 Grid Computing Environments. 12
3.2 Grid Applications and User Profiles. 13
3.3 Dynamic Characteristics. 15

4. Challenges of Software Environments for Distributed Applications 16
Component-based Models and Software Architectures. 16

5. Summary 19

Acknowledgements 20

Bibliography 21

2



ABSTRACT As Grid computing technologies and infra-
structures are being developed, suitable ab-
stractions, methods, and tools will become 
necessary  to  enable  application  develop-
ment,  and  software  development  of  the 
components  of  Grid  Computing Environ-
ments. Grid Computing will enable distrib-
uted applications with large numbers of in-
volved components with dynamic interac-
tions. This requires new approaches to un-
derstand and manage structure and behav-
ior, and the diversity of interactions among 
system components.
This  paper  examines  emerging  trends  in 
distributed applications on large scale and 
dynamic  Grid  computing  infrastructures. 
These trends allow identifying the need to 
develop suitable software models, methods 
and  tools  for  Grid  Computing  Environ-
ments, in order to help specify, compose, 
and  develop  dynamic  distributed  large 
scale applications.

Key words: Distributed applications, 
Grid software environments, 
Problem Solving Environments



1. Introduction

In  the past  two decades,  advances in parallel  and distributed computing have enabled the 
development of advanced applications [35, 56]. Recent efforts have been centered around 
Grid Computing initiatives all over the world [1, 11, 15, 16, 26–28, 33, 39].

In this paper I look at the recent past of distributed and parallel computing, in order to try to 
understand  trends  of  application  development  on  integrated,  heterogeneous  large  scale 
distributed environments.

However, it should be noted that such an intensive research effort and current interest on the 
Grid does not mean this  is  the  only way to  make applications reliable  and robust  to  the 
heterogeneity  and  the  unpredictable  occurrences  in  distributed  computing  environments. 
Other  approaches  and  technologies  are  bringing  important  contributions  to  address  these 
challenges. 

Distributed  computing  research  has  been  addressing  large  scale  distributed  resource 
utilization  and  management  issues  for  the  past  decade.  However,  there  has  been  a  gap 
between  academy  research  and  commercial  and  industrial  practice,  as  far  as  distributed 
systems technology is concerned. For example, the success of the Web is partly due to its 
impact  upon  user  driven  interactions  and  its  effective,  even  if  limited,  client-server 
organization. 

On the other hand, fundamental research on distributed computing has been trying to find 
answers  to  challenging  theoretical  and  technical  problems,  with  important  contributions, 
although with less immediate impact upon real applications, but this is changing with the 
emergence of new technologies.

The  Grid  is  having  a  positive  contribution  in  raising  the  concern  for  such  distributed 
computing issues, such as providing clear and stronger guarantees for performance reliability, 
security, scalability, and consistency, which have not been considered in most commercial 
software, except for a small niche of critical application domains.

Furthermore, as the Grid initiatives emerge in relation to scientific applications, in order to 
enable complex problem solving, this may well contribute to promote user adoption of these 
technologies.

On one hand, it is expected that technologies, for example, based on the evolution of Web 
services, P2P computing, and Grid computing, will play complementary roles, concerning the 
proposal of new concepts and paradigms, and the development of new support environments 
and infrastructures. 
On the other hand, it is not clear which technologies will exist or be dominant in the future. In 
the past,  commercial and marketing issues, and technology transfer aspects, as well as the 
degree of user adoption, have been critical barriers to adopt new technologies and solutions.



The main motivation of this paper is that by looking at Grid Computing from a transparency-
oriented perspective, we may better understand the main issues involved in the development 
of large scale distributed applications.

Transparency in this context refers to the capability to hide levels of complexity at particular 
points in the infrastructure hierarchy. A programmer, for instance, should not need to know 
precise  details  of  computational  hardware  in  order  to  use  it.  Here  is  maintained  the 
“traditional”  use  of  the  term,  although,  some  of  the  researchers  pointed  out  that,  if 
“Transparency” means to hide complexity of the underlying layers, then it should be called 
“Opaqueness” instead.

Transparency  is  a  significant  requirement  for  enabling  existing  Grid  systems  to  work 
effectively. Being able to run application over distributed resources (both computational and 
data) remains a significant challenge for Grid computing systems. It is therefore necessary to 
couple  this  capability  with  environments  which  enable  users  to  express  their  application 
demands, and manage and monitor the execution of the application subsequently. 

Figure 1 provides a layered view of how Problem Solving Environments may interact with 
Grid Computing systems. From this perspective, Grid computing provides a way to aggregate 
access  to  a  diverse  range  of  different  resources.  Such  systems  must  provide  interfaces 
(perhaps as APIs), that enable access to different kinds of resource managers (such as Grid
Engine,  LSF,  etc),  and  data  managers  (such as  access  to  file  systems,  or  structured  data 
bases). Problem Solving Environments therefore act as mediation between user access Portals 
(generally problem specific), and resource management systems that enable the execution of 
tasks generated by the user via the Portal. Focus in this paper is to discuss the importance of 
this mediation, and the need for abstractions that can facilitate this.

Fig. 1. Interaction between Problem Solving Environments and Grid Computing Systems



In the remaining of this section a summary of trends in distributed applications is presented in 
order to motivate the need for new approaches. Then a global view of distributed, parallel and 
grid computing is presented.

In  the  following  sections,  the  main  characteristics  of  parallel  and  distributed  PSEs  are 
surveyed in Section 2. In Section 3, Grid Computing Environments are discussed and their 
influences  on  application  development.  The  challenges  in  the  development  of  distributed 
applications for large scale dynamic computing environments are discussed in Section 4 and 
then some conclusions are presented.

1.1 Trends in Distributed Applications

In  the  past  decades,  there  have  been  advances  in  architectures,  systems,  tools  and 
environments, and programming models, languages and methods for parallel and distributed 
computing [35]. Such advances have increased the pressure to develop advanced applications 
in a wide range of domains, for instance, complex simulations in science and engineering, 
massive  data  archiving  and  searching  in  Bioinformatics  or  natural  language  processing, 
information retrieval and indexing mechanisms for search engines, to the dynamism in mobile 
multimedia  and  distributed  agent  systems.  Such  applications  pose  requirements  beyond 
’traditional’ high-performance parallel computing systems:
 
• Higher degrees of user interaction, requiring increased flexibility in observation, control, 

or modification of application components.

• Intelligent advisory and assistance tools for the development and execution of different 
phases of an application life-cycle.

• Multidisciplinary  applications,  requiring interactions  between distinct  sub-models,  and 
distributed user collaboration.

• The need to undertake computations that are not “regular”, and therefore difficult to map 
easily to traditional parallel computing models.

• Dynamic nature of the applications and the environments, as new application components 
or system resources are dynamically generated or made unavailable, or due to mobility.

• Spatial distribution of application components and system resources, at small, medium or 
large scales.

• Increasing importance of connecting to distributed data  resources (both structured and 
unstructured).

The above requirements should be met by development and execution support environments 
so that software developers and experts may have the desired degrees of flexibility in the 
design and implementation of advanced applications.

Recently, the above aspects have been increasingly influencing the academic and industrial 
communities,  in  their  aims  to  exploit  parallelism  and  distribution  as  a  way  to  meet  the 
functionalities and the performance requirements of many application classes [2, 5, 12–14, 21, 
28, 37, 56, 72].



1.2 The Need for New Approaches

Grid computing brings several new dimensions, due to its intrinsic large scale capability of 
providing  distributed,  heterogeneous,  and  dynamic  resources,  spanning  the  boundaries  of 
human  organizations  [26,  41].  However,  a  significant  aspect  of  Grid  computing  is  the 
intention to provide a unifying abstraction for the end-level user. This requires a major re-
thinking of existing computational models, and their supporting tools and environments, and 
poses  challenges  that  go  beyond  what  has  been  previously  addressed  by  parallel  and 
distributed  computing.  Such  challenges  are  not  simply  about  being  able  to  support 
interoperability between different resource management systems (although, this in itself is a 
commendable  activity)  –  but  also  about  providing suitable  abstractions  that  could enable 
programming languages and tools to make more effective use of Grid systems [59].

New models and strategies are required for dynamic or adaptive resource scheduling [32], and 
their  impact  must  be  studied,  with  the  additional  difficulty  that  Grid  applications  are, 
themselves,  being  developed  at  the  same  time.  New forms  of  systems  organization  and 
problem-solving strategies must be considered. Due to their openness, new approaches are 
needed  to  understand  structure  (topology,  types  of  components)  and  behavior,  and  the 
interactions among their participants (security and trust). Due to the heterogeneity and time 
varying characteristics of their infrastructures, new performance issues have to be considered.

In the following sections, are examined in more detail why the above issues are relevant and 
the main challenges that they pose to the software development process. Outlined are, several 
research directions that I think may contribute to ease the above process and influence the 
design of future support environments, tools and infrastructures.

1.3 Distributed, Parallel and Grid Computing

Parallel and distributed computing in the 1980s and 90s had great influence upon application 
development.  The  improvements  in  computation  and  communication  capabilities  have 
enabled the creation of demanding applications in critical domains such as the Environment, 
Health,  Aerospace,  and other areas of Science and Technology. Similarly,  new classes of 
applications  are  enabled  by  the  new dimensions  of  heterogeneous large  scale  distributed 
systems which are becoming available nowadays. 
In Figure 2 the joint influences of distributed, parallel and grid computing are sketched.

Parallel  Computing  Systems exploit  a  large  diversity  of  computer  architectures,  from 
supercomputers,  shared-memory or distributed-memory multiprocessors,  to  local  networks 
and  clusters  of  personal  computers.  Such  diversity  has  contributed,  to  increasing  the 
difficulties  of  parallel  application  development,  in  order  to  meet  the  correctness  and 
performance specifications. Many of these difficulties still remain, although there were great 
improvements due to a long term research effort on models, support tools and environments 
[35].



Fig. 2. Parallel and Distributed Computing

The  emergence  of  large  scale  distributed  and  grid  computing  systems  has  opened  new 
possibilities for the exploitation of large scale parallelism. This has enabled more ambitious 
applications, but it also brought new dimensions and difficulties to the process of application 
development  as  modern  parallel  and  distributed  platforms  become  more  complex 
heterogeneous  systems.  These  platforms  include  a  diversity  of  subsystems,  with  varying 
performance  behavior  in  their  computation,  storage  and  communication  elements,  with 
distinct computational models and with varying scales of distribution.

Distributed and Grid Computing Systems exploit several degrees of decentralization of data 
and control, in order to adapt to the application requirements. For instance, this adaptation can 
involve  geographical  distribution,  availability  and  reliability,  and  abstractions  for 
computation, communication, and storage.

The above requirements must be met with appropriate degrees of transparency, by hiding low 
level concerns and trying to provide only meaningful abstractions to the application layer. At 
each level of the layered architecture of a distributed computing system, there are design 
choices  concerning  the  appropriate  transparency  degrees  that  must  be  provided  to  upper 
layers.

By looking at the recent past, one can observe that many design choices related to the offered 
transparency  degrees,  are  typically  revised  as  time  passes  and  technology  evolves.  For 
example,  support  for  failure  transparency  was  greatly  influenced  by  developments  in 
hardware technologies, such as redundant disk arrays or replicated processing units. 

Communication  abstractions  have  also  evolved,  depending  on  the  underlying  support 
technologies.  In distributed computing systems, communication models have evolved with 
increasing transparency degrees, from message-passing communication, to higher level RPC-
based  models,  and  to  Distributed  Shared  Memory.  The  latter  were  made  feasible  due  to 



advances  in  communication  infrastructures  and  to  the  evolution  in  the  consistency 
management  algorithms.  Support  for  consistency  in  distributed  process  groups  is  also 
dependent on the available communication infrastructures and requires trade-offs between the 
supported transparency and the awareness to failure situations and to the system scale. The 
above abstractions need to be adjusted in order to fit the characteristics of applications and 
issues arising from the availability of Grid environments.

Transparency  and  awareness  concepts  evolve  as  new  functionalities  or  supporting 
technologies  become  available.  For  example,  mobile  computing  requires  awareness  to 
disconnected operation modes, as well as to location-sensitive information.
For  example,  consistency algorithms  for managing distributed process  groups  need to  be 
adapted for mobile computing environments, in order to consider location awareness issues. 
The semantics of the programming abstractions that are provided to the programmer must 
also be adjusted, in order to reflect the new transparency / awareness trade-offs.

Current research on Grid Computing reflects a revision of transparency concepts, aiming at 
more ambitious application and user profiles. Such revision was made possible because of the 
recent advances in communication and computation technologies, enabling the deployment of 
high speed networks, giving access to a large diversity of computational and data resources 
[38].

Also, by revising the degrees of transparency provided to the application layer, some of the 
inner layers of the underlying distributed system architecture must also be revised, in order to 
meet the application requirements. For example, Quality of Service (QoS) issues become of 
great importance in Grid environments due to the dynamic and uncertainty characteristics of 
such environments. In the context of Grid systems, QoS can also be defined at different levels 
– the Application QoS (A-QoS) relates to the user perception of a running program. The A-
QoS is therefore particularly influenced by the type of Portal being used, and the interface 
between the Portal and the Grid System. To support real time interactions, for instance, it is 
necessary that A-QoS be maintained within tolerable bounds. 
The next level of QoS relates to the Grid system itself, which I refer to as Middleware QoS 
(M-QoS), and related to the Grid system itself. Hence, the time required to spawn new tasks 
and manage their subsequent execution is governed by the M-QoS. This level of QoS must be 
measured between the Grid system and the one or more resource managers that are being used 
at any given instance. 
The third level of QoS is the network or resource QoS (R-QoS) – and extensive work exists in 
the literature  on measuring,  monitoring,  and in some cases,  enforcing this.  Network QoS 
(with parameters such as jitter, bandwidth, latency, delay) has been extensively investigated. 
Similarly, one can consider the existence of computational resource QoS, where parameters 
such as the number of CPUs, or minimum memory become significant.
 However, to enable effective deployment of applications, it becomes necessary to aggregate 
QoS over  all  three  of  these  levels.  Intermediate  software  layers  are  required  in  order  to 
provide  the  appropriate  application  semantics,  for  example,  by  enabling  dynamic 
configuration and adaptive behavior capabilities in order to support such QoS.



2. Problem-Solving Environments

PSEs represent a significant approach to help manage the complexities of problem-solving in 
specific domains, as well as to provide integrated support and easy access to parallel  and 
distributed resources. In this section, the main functionalities of a PSE are briefly surveyed.

 
2.1 Problem-Solving Environments.

Problem-Solving Environments (PSE) [45, 46, 52, 53, 73] are integrated environments for 
solving a class of related problems in an application domain. Typically they encapsulate state-
of-the-art algorithms and problem solving strategies, in order to provide transparent and easy 
to use interfaces to an engineer or a scientist.

In  the  past  decades,  PSEs  had  a  significant  impact  in  many  areas,  ranging  from  fully 
developed environments in industrial  applications,  such as Automotive and Aerospace,  to 
many applications in Science and Engineering. In such applications, PSEs have found major 
use, in the support of the design process, in the development of rapid prototypes, in studies on 
application behavior, and in decision support and control systems [85].

Recently, PSEs have been developed in other areas such as Education, Environment, Health, 
Finance, etc. This trend is creating a new profile of end-user, beyond the typical scientist and 
engineer. This is a significant development, as requirements for users in other application 
domains  are  now being incorporated  within  PSEs  –  thereby enabling  the  uptake  of  new 
development environments (such as Web Services and .NET), which were not traditionally 
part of the scientific computing genre.

2.2 Application Characteristics.

During  the  1990s,  applications  in  Science  and  Engineering  became  more  complex  and 
typically exhibit the following main characteristics [35]:

• They are based on complex models in a given problem domain, requiring computation 
intensive simulations.

• They  must  handle  large  volumes  of  input  and  generated  data,  involving  difficult 
interpretation and classification.

• They  require  a  high  degree  of  user  interaction,  with  offline  or  online  processing 
modes,  and scientific  visualization,  with distinct  user  interfaces,  and  often relying 
upon computational steering functionalities.

• They are multidisciplinary, combining multiple heterogeneous models, and possibly 
requiring the online collaboration of multiple users.

The above characteristics have influenced the design of applications and problem solving 
environments based on heterogeneous components, in order to allow:



• Access to a diversity of sequential, parallel or distributed problem solvers, supporting 
distinct types of simulators, mathematical packages, possibly based on legacy codes.

• Use of existing (third party) tools for data processing, interpretation and visualization.
• Online access to repositories of scientific data sets and databases.
• Interactive computational steering.

Such  more  complex  requirements  triggered  a  more  complex  cycle  of  user  activities  for 
application development, deployment and execution, when compared to older stand alone and 
monolithic PSEs,  which were typically supported by a single process with a built-in user 
interface, running on a single workstation:

1) Problem specification.
2) Configuration  of  the  environment  (component  selection  for  simulation,  control, 

visualization).
3) Component activation and mapping.
4) Initial setup of simulation parameters.
5) Start of execution, possibly with monitoring, visualization and steering.
6) Analysis of intermediate and final results.

These requirements motivated the development of PSEs to exploit heterogeneous parallel and 
distributed resources, and trying to automate the above tasks as much as possible [29, 52].

The functionalities provided by a PSE can be divided in three main classes [85]:

• Support for problem specification.
• Support for resource management.
• Support for execution monitoring and control services.

Such functionalities are  supported by Component frameworks (such as CORBA and Java 
Beans) for the integration of heterogeneous components into unified environments [30, 60, 
61,  84]. Such frameworks also provide interfaces for the transparent access to distributed 
resources, and facilities for collaborative design and simulation. Often such frameworks are 
limited in their capability to support parallelism, and often have performance penalties not 
acceptable for scientific users.

However, in the late 1990s such Parallel and Distributed PSEs were typically mapped onto a 
parallel  and  distributed  platform,  e.g.  based  on  PVM  [17]  or  MPI  [10],  running  on 
multiprocessors or local computer networks.  Web-based interfaces and portals  opened the 
way to support remote access to PSE and problem-solving in specific disciplines.
Overall,  during  the  90s,  PSEs  have  played  a  significant  role  in  supporting  advances  in 
Computational Science and Engineering [46].

When moving to Grid Computing Environments, it is expected that PSEs will play an even 
more  significant  role,  due  to  the  increased  complexity  of  Grid  applications  and  Grid 
Computing Environments.
 



3. Influences of Grid Computing on Application Development

In this section, I will examine Grid Computing Environments, and how they are enabling the 
development of advanced distributed applications, from a  user-oriented perspective.  I  will 
describe  the  main  characteristics  of  grid  applications,  and  identify  the  main  classes  of 
applications and user profiles.

3.1 Grid Computing Environments.

The architecture of a Grid Computing System is composed of multiple layers, following the 
traditional architecture of a distributed computing system:

• User interfaces, applications and PSEs
• Development tools, programming models and environments
• Grid middleware: Resource management and scheduling; information registration and 

discovery;  authentication  and  security;  storage  access,  computation,  and 
communication services

• Heterogeneous resources and network infrastructures

The  main  distinctive  characteristics  of  the  Grid  is  the  goal  to  provide  single  unifying 
abstractions to the end-user,  in order to allow transparent execution of highly demanding 
computations, user interaction in large scale virtual communities, and access to a diversity of 
computational  and  data  resources  and information  repositories.  Grids  will  enable  ’heavy-
weight’ applications in Science and Engineering, based upon complex large scale distributed 
simulations with visualization and steering, access and analysis of large distributed datasets, 
and access to remote data sources and scientific instruments [6, 36, 39, 40, 50].

However,  Grids  Computing  Environments  are  much more  complex  than  the  parallel  and 
distributed computing environments of the 1990s. Such increased complexity is not only due 
to the diversity and heterogeneity of the physical support infrastructures, but also due to the 
critical  dimensions  of  large  scale  distribution,  the  crossing  of  multiple  administrative 
domains, increased security concerns, and the need to manage heterogeneous and dynamic 
resources. All of these aspects must be managed by Grid Computing Environments [8, 43, 
44],  in  order  to  allow  multidisciplinary  and  online  collaboration  among  geographically 
distributed users, for example via Web interfaces and portals [19, 22, 24, 65–67, 79].

Many ongoing projects  are  developing sets  of tools and software layers to  provide easier 
access  to  Grid  resources.  A  diversity  of  technologies  and  languages  is  being  used  to 
implement such tools [28, 49]. For example, Java, Python, Perl, CORBA, and their interfacing 
to the more basic Grid functionalities, as provided by the Globus toolkit. Web Services and 
XML [71] based technologies are also used to exploit integration or interoperability. 

Significant efforts are  also under way concerning the development of Web interfaces and 
portals,  of  a  more  generic  applicability,  possibly  supported  by  Grid  Portals  development 



middleware [66], or more application-specific and more related to the PSE concepts [57, 75, 
79].

Such efforts are relevant in order to experiment with existing technologies and their possible 
extensions for the Grid.  However, currently there is a large diversity and heterogeneity in 
those models and tools, and their implementations are not completely stable, standard or fully 
developed. In fact, even the lower levels, such as the Globus layer, are also evolving. This 
makes  the  development  or  experimentation  with  higher  level  abstractions,  supporting  the 
application layer, more difficult.

This concerns, for example, approaches for the development, organization and coordination of 
the  application  components,  and  for  supporting  application-specific  problem  solving 
strategies, resource discovery and scheduling, adaptive behavior, and access control policies.

How  can  we  enable  the  experimentation  and  development  of  higher  level  application 
abstractions,  for  example,  supporting  specific  concepts  and  tools  for  a  given  class  of 
applications or problem domain, as well as more generic sets of high-level functionalities? 
This can be achieved by PSE layers and/or Intermediate Frameworks which provide more 
stable  APIs  and  hide  lower  level  concerns,  but  still  allow  extensions  and  incremental 
development [21, 43]:

• Higher level Application Abstractions
• PSE Layer
• Intermediate Frameworks
• Basic Grid Services

Several  significant  projects  and  working  groups  within  the  Global  Grid  Forum  [15]  are 
developing such kinds of intermediate layers [7, 9, 15, 25, 51, 81, 82]. For instance, OGSA 
(Open Grid Services Architecture),  several  ’Commodity Grid Kits’,  and research projects 
such as GrADs and GridLab. PSEs contribute to this goal [3, 18, 20, 36, 42, 54, 64, 74, 76].

Currently  there  is  no  uniform  Grid  computing  model,  although  there  are  several  well-
identified needs for certain typical user tasks [43], for instance, running jobs, performing data 
management, composing workflows, online interactions for collaboration, etc. 
In the following, are described several types of application and user profiles, which may help 
in  identifying  the  requirements  posed  to  the  layers  supporting  high-level  application 
abstractions.

3.2 Grid Applications and User Profiles.

Current efforts in the development and deployment of large scale distributed applications are 
not just academic exercises. There is a real pressure from research and industry to develop 
applications  that  require  computation  and  information  resources  for  bigger,  longer 
experiments supporting more accurate models in specific areas. Easier and transparent access 
to remote resources is also required to increase the application and users’ ability to analyze 



and react in real-time. Increased levels of user interaction with the applications and among 
collaborative users is also required for increased productivity [34, 69, 83].

By looking at ongoing experiments on large scale applications, the following main profiles 
can be identified [21, 28, 77]:

1) Computational  Grids. A  single  access  point  to  a  large-scale  high-performance 
computing service, with transparent access to the underlying parallel and distributed 
servers.

2) Scientific  Data  Grids. Access  to  large  scientific  datasets,  with  optimized  data 
transfers and interactions for data processing and manipulation.

3) Virtual  Organizations  and  Collaborative  Virtual  Spaces. Access  to  virtual 
environments for resource sharing, online interaction and collaboration.

4) Information, Knowledge and Semantic Grids. Large and geographically distributed 
information  repositories,  made  available  for  searching  and  data  mining,  and  for 
intelligent knowledge management and decision support.

The above profiles are not mutually exclusive. In fact, they share several more generic goals. 
Access is globally unified through virtual layers:

• To solve new or larger problems by aggregating available resources.
• To access a large diversity of computation, data and information services.
• To enable coordinated resource sharing and collaboration across virtual environments.

There is a need to rely upon more uniform, standard and/or agreed upon interfaces for large 
scale computing environments, in order to allow the integration and cooperation of distinct 
services.

There is a need to support the concept of virtual resources. This is required to support the 
execution  of  experiments  involving  distributed  computation  and  data,  as  well  as  virtual 
collaboration  spaces.  Access  and  management  of  persistent  resources  such  as  databases, 
catalogues, and archives is also required.

For  example,  in  a  range  of  distributed  applications  involving  distinct  functionalities,  for 
example,  Data  Mining,  Distributed  Simulation,  Visualization  and  Steering,  Collaborative 
Mobile  Multimedia,  and/or  Distributed  Intelligent  Agent  Systems,  one  can   find  several 
common issues: 

(i) large  volumes  of  data  (text  or  images),  and  efficient  search,  requiring 
parallel processing and parallel input/output; 

(ii) dynamic, distributed, and mobile application entities, requiring appropriate 
structuring, interaction, and coordination abstractions; 

(iii) integration of distributed heterogeneous components in a highly interactive 
environment,  supporting  dynamic  reconfiguration  of  components,  and 
execution at small or large scales; 

(iv) organization, management, and coordination in a distributed agent system, 
requiring  a  dynamic  system  organization  and  intelligence  within  each 
agent. (further discussed in section 3.3).



It is a challenge to design and develop large scales integrated (development and execution) 
environments  offering  support  for  the  above  common  functionalities.  This  is  further 
motivated by current trends towards multidisciplinary applications and the convergence of 
several technologies, such as Web Services, P2P Computing, Grid Computing, Mobile and 
Ubiquitous Computing [48].

3.3 Dynamic Characteristics.

In existing parallel and distributed systems, changes in the configuration and availability of 
resources, variations of their characteristics and behavior, have already motivated multiple 
approaches to address dynamic system reconfiguration, for example, in systems that support 
fault tolerance, dynamic task spawning and load balancing.

Such  dynamic  changes  are  intrinsic  characteristics  of  large  scale  distributed  computing 
systems.

On application initiation, contract negotiation schemes will guide intermediate agents, acting 
as  planners/brokers/schedulers on behalf  of  the  application resource requirements.  During 
execution, there is a need to provide new problem-solving strategies with adaptive behavior. 
Intermediate layers of the Grid Computing Environment must be aware to Quality of Service 
factors,  and  be  able  to  detect  changes  in  the  corresponding  system  behavior.  Dynamic 
revision of the initially formulated agent plans must be supported, and appropriate interfaces 
must be devised to support the interaction with the monitoring and runtime reconfiguration 
functionalities.

Dynamic  characteristics  may  also  be  required  by  the  applications  or  problem-solving 
environments.  For  example,  collaboration  models  may  be  supported  by  group  oriented 
abstractions, where dynamic changes may correspond to users entering or leaving a group. 
Such  abstractions  also  require  awareness  to  factors  related  to  current  group  members 
availability or connectivity, for example, in a mobile computing environment.

Online experiments or simulations may require a change to a distinct operation mode, e.g. 
offline or online, as well as usage of a distinct tool. An ongoing experiment may need to be 
re-configured on-the-fly, by including new components or tools (e.g. for visualization). Also, 
multiple  users  or  agents  may  concurrently  join  ongoing  experiments,  possibly  assuming 
distinct roles (observation, steering), or requiring distinct views.

In  general,  in  future  distributed  computing  environments,  mobility  of  users,  agents,  and 
devices, pose a clear requirement to provide support for dynamism, in several layers of the 
computing system hierarchy. This requirement encompasses the application and PSE level, 
the intermediate frameworks supporting tools and environments, down to the middleware and 
execution support layers.



4. Challenges of Software Environments for Distributed Applications

In  this  section,  are  examined  the  main  challenges  to  the  development  of  distributed 
applications, from a software development perspective. Examined are issues and approaches 
to face those challenges.

The development of infrastructures to support Grid Computing Environments and their basic 
functionalities is a significant goal that is being pursued by many national and international 
projects. However, many issues of providing support for application development over such 
infrastructures, as well as facilities to help software developers in building and integrating 
software components are still left open. 
This is a significant challenge to enable effective application and software development for 
Grid Computing Environments [8, 15, 58].

Component-based Models and Software Architectures.

Component-based models [78] provide effective ways to develop Grid applications and PSEs, 
as  they allow varying degrees  of  complexity  and granularity,  and facilitate  the  access  to 
wrapped  software  packages  [4,  23,  30,  60,  61,  84].  Component  models  allow  a  clear 
separation between computation and interaction. This is a significant aspect to  model the 
heterogeneity of Grid application components, their complex interactions, and the need for 
their dynamic modification and reconfiguration [55, 75, 80].

New  abstractions  and  models  are  required  to  build  and  manage  large  scale  dynamic 
organizations of components, for example, allowing manipulation of individual components 
or  groups  of  components.  Facilities  for  component  integration,  reuse  and  dynamic 
composition, and coordination of component interactions must also be revised to address Grid 
application characteristics.

Support for modeling and reasoning on system structure and behavior is required in order to 
evaluate and predict global properties of an applications, concerning its functional and non-
functional aspects.

There are already several approaches to model composition and workflow abstractions using 
components [18,  62,  63,  84].  Their  integration into visual  programming and development 
environments facilitate the graphical design of a Grid application.
Such environments can be complemented by other development support tools, for example, 
for testing and debugging, and for visualization and steering, simulation and evaluation tools.

Appropriate levels of flexibility must be provided at all stages of the software lifecycle, from 
application  specification  and  design,  including  program  transformation  and  refinement, 
simulation,  evaluation  and  prediction  of  behavior,  code  generation,  configuration  and 
deployment.  The  following  issues  should  be  considered  when  designing  the  software 
development and execution support environments:



• A clear separation of computation and interaction (coordination) issues, and structural 
and behavioral properties of an application.

• The specification of an application in terms of multiple components, still  enabling 
alternative  mappings  onto  the  underlying  layers,  i.e.  with  varying  degrees  of 
automated processing, and possibly targeted at distinct programming languages and 
models.

• Ways to bridge the gap between the higher layers (such as programming models and 
languages) and the underlying cluster/Grid platforms, so that application configuration 
and deployment can be adjusted according to the dynamic changes in the available 
resources.

• Support  for  coordination  of  distributed  entities,  with  adaptability  and  dynamic 
reconfiguration.

• Support for infrastructure services – such as event management, naming, transaction 
management, that traverse different Grid systems. Providing a common way to name 
objects  generated  from  a  program  that  must  be  distributed  across  different  Grid 
systems remains a difficult challenge.

Abstract view of the main elements involved in the software lifecycle is sketched in Figure 3. 
This figure does not aim to propose a new method to model the software lifecycle activities. It 
only aims to illustrate the relationships among the above mentioned issues.

Fig. 3. Software Lifecycle

Templates,  skeletons,  or  patterns  are  significant  abstractions  to  capture  reusable  and 
commonly occurring structures  and behaviors  [31,  47,  68,  70].  They become particularly 
useful in distributed dynamic environments, due to the diversity of component functionalities 
and interaction models. They are intended to support the software development process by 
enabling  the  developers  to  access,  and  possibly  customize,  common  component  and 
interaction  types.  Their  descriptions  are  kept  in  repositories  of  software  templates,  with 
relevant  attributes  that  must  be  created  and managed during the  software  lifecycle,  from 
design to execution time. This enables alternative implementations and varying degrees of 
automated processing.

The mappings of the programming models onto the underlying component and computing 
platforms must allow flexible configuration and deployment, and dynamic reconfiguration. 
This requires appropriate interactions with the middleware resource description and discovery 
services, and with execution control and monitoring services.

Above concerns should drive further research on several layers of the software hierarchy [29]:



• Software  architecture  models  and  specification  languages  for  composition  and 
component interaction, and coordination models.

• Organization models for managing large scale dynamic applications.
• Resource management, discovery, and scheduling; execution monitoring and control; 

runtime  support  for  dynamic  reconfiguration  on  heterogeneous  hardware/software 
platforms.

For each layer, there is a need to design appropriate abstractions, models and tools, in order to 
enable the development of future generations of applications.

The presentation of the above issues aims at giving a global view of what is involved in the 
development of future generations distributed applications. Of course, for each case and user 
profile,  there  will  be  multiple  alternative  ways  to  meet  the  application  needs  and 
requirements.



5. Summary

As Grid computing technologies and infrastructures are being developed, the availability of 
suitable  abstractions,  methods,  and  tools  will  become  necessary  to  enable  application 
development,  and  software  development  of  the  components  of  Grid  Computing 
Environments.

There  is  a  challenge  to  develop  software  engineering  techniques  for  Grid  Computing 
Environments, in order to help specify, compose, and develop dynamic distributed large scale 
applications.

Future distributed applications on Grid Computing Environments will tend to exhibit higher 
degrees of user interaction, with increased flexibility in observation and control of application 
components.  Multidisciplinary and online collaboration involving distributed users will be 
more  frequent,  as  well  as  dynamic  applications  and  environments,  with  new application 
components or system resources being dynamically generated, made unavailable, or mobile. 

Awareness to the spatial distribution of application components and system resources, and 
their  organizations  at  small,  medium  or  large  scales,  will  be  an  increasingly  significant 
concern.

Distributed Problem-Solving Environments are expected to play a significant role in bridging 
the gap from the application level concepts to the complexity of the emerging Grid computing 
platforms.

New models,  support  tools  and environments are  required for component integration,  for 
flexible mappings between software levels, for predicting and evaluating global application 
and system properties, for coordination of dynamic distributed applications, and for adaptive 
application behavior.

Current initiatives in Grid computing technologies and infrastructures are opening the way to 
enable the research and development of the software models,  methods and tools that  will 
integrate future generations of software environments.



Acknowledgements:

I’d like to thank for the scientific support I’ve received from Prof. Daniel IOAN,
www.lmn.pub.ro/~daniel,  my research supervisor at LMN

The work was financed by Marie Curie EST3 project http://est3.lmn.pub.ro/

http://est3.lmn.pub.ro/
http://www.lmn.pub.ro/~daniel


Bibliography

[1] ASCI DoE Advanced Simulation and Computing Program. http://www.lanl.gov/asci.
[2] Biomedical informatics research network BIRN grid. http://www.nbirn.net.
[3] Cactus Grid Computational Toolkit. http://www.globus.org.
[4] Common Component Architecture. http://www.cca-forum.org.
[5] European grid application toolkit and test bed. http://www.gridlab.org.
[6] Globus Grid Project. http://www.globus.org.
[7] GrADS grid application development software project. http://nhse2.cs.rice.edu/grads.
[8] Grid Computing Environments Working Group. http://www.computingportals.org.
[9] The GridLab project. http://www.gridlab.org.
[10] Message Passing Interface. http://www.mpi-forum.org.
[11] NASA information power grid. http://ipg.nasa.gov.
[12] National collaboratories: Applying information technology for scientific research. Washington, D.C.: 
National Academy Press, 1993, http://www.nap.edu/books.
[13] Particle physics data grid. http://www.ppdg.net.
[14] SETI@Home Internet Computing. http://setiathome.ssl.berkeley.edu.
[15] The Global Grid Forum. http://www.gridforum.org.
[16] UK e-Science. http://www.escience-grid.org.uk.
[17] Parallel Virtual Machine. http://www.csm.ornl.gov/pvm/pvm.home.html, 2003.
[18] Triana. http://www.triana.co.uk, 2003.
[19] Sudesh Agrawal, Jack Dongarra, Keith Seymour, and Sathish Vadhiyar. NetSolve:Past, present and future: a 
look at a grid enabled solver. In Grid Computing: Makingthe Global Infrastructure a Reality. John Wiley and 
Sons, 2003.
[20] G. Allen, T. Dramlitsch, I. Foster, N.T. Karonis, M. Ripanu, E. Seidel, and B. Toonen. Supporting efficient 
execution in heterogeneous distributed computing environment with Cactus and Globus. In Proceedings Super 
Computing 2001, Denver, USA,November 2001.
[21] G. Allen, T. Goodale, M. Russell, E. Seidel, and J. Shalf. Classifying and enabling Grid applications. In 
Grid Computing: Making the Global Infrastructure a Reality.Wiley, 2003.
[22] A. Aloisio and M. Cafaro. Web-based access to the Grid using the Grid Resource Broker. Concurrency and 
Computation: Practice and Experience, 14(13-15):1145–1160, 2002.
 [23] R. Armstrong, D. Gannon, A. Geist, K. Keahey, and L. Mcinnes S. Kohn, andS. Parker. Toward a common 
component architecture for high performance scientificcomputing. In Proceedings of the 8th IEEE Symp. on 
High Performance DistributedComputing, 1999.
[24] D. Arnold, H. Casanova, and J. Dongarra. Innovations of the NetSolve GridComputing System. 
Concurrency and Computation: Practice and Experience, 14(13-15):1457–1479, 2002.
[25] M. Atkinson. Rationale for choosing the Open Grid Services Architecture. In Grid Computing: Making the 
Global Infrastructure a Reality. Wiley, 2003.
[26] M. Baker, R. Buyya, and D. Laforenza. Grids and Grid technologies for wide–area distributed computing. 
Software Practice and Experience, 32(15):1437–1466,December 2002.
[27] F. Berman, G. Fox, and T. Hey. The Grid: Past, Present and Future. In Grid Computing: Making the Global 
Infrastructure a Reality. Wiley, 2003.
[28] F. Berman, G.C. Fox, and A.J.G. Hey, editors. Grid Computing: Making the Global Infrastructure a Reality. 
Wiley, 2003.
[29] R.F. Boisvert and P.T.P. Tang, editors. The Architecture of Scientific Software. Kluwer Academic 
Publishers, 2001.
[30] R. Bramley, D. Gannon, T. Stuckey, J. Villacis, J. Balasubramanian, E. Akman,F. Breg, S. Diwan, and M. 
Govindaraju. Component architectures for distributed scientific problem solving. IEEE Computational Science 
and Engineering, 5(2):50–63, 1998.
[31] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal. Pattern-Oriented Software 
Architecture: A System of Patterns. Wiley, 1998.
[32] R. Buyya. Economic-based Distributed Resource Management and Scheduling for Grid Computing. PhD 
thesis, School of Computer Science and Software Engineering, Monash University, Melbourne, Australia, 2002.
[33] M. Chetty and R. Buyya. Weaving computational grids: How analogous are they with electrical grids. IEEE 
Computing in Science and Engineering, pages 61–71, jul-aug 2002.



[34] J.A. Clarke and R.R. Namburu. A distributed computing environment for interdisciplinary applications. 
Concurrency and Computation: Practice and Experience, 14(13-15):1161–1174, 2002.
[35] J. Dongarra, I. Foster, G. Fox, W. Gropp.and K. Kennedy, L. Torczon, and A. White, editors. Sourcebook 
of Parallel Computing. Morgan Kaufmann, 2003.
[36] Dietmar W. Erwin. UNICORE- a grid computing environment. Concurrency and Computation: Practice and 
Experience, 14(13-15):1395–1410, 2002.
[37] S.C. Farantos, S. Stamatis, N. Nellari, and D. Maric. A joint scientific and technology activity and study on 
grid enabling technology. Technical report, ENACTS, December 2002.
[38] I. Foster. The physiology of the grid: An open grid services architecture for distributed systems integration. 
Technical report, Argonne National Laboratory, IL, 2002. [39] I. Foster and C. Kesselman, editors. The Grid: 
Blueprint for a New Computing Infrastructure. Morgan Kaufmann, 1999.
[40] I. Foster, C. Kesselman, and S. Tuecke. The anatomy of the Grid: Enabling scalable virtual organizations. 
International Journal of Supercomputing Applications, 15(3), 2001.
[41] Ian Foster. The grid: A new infrastructure for the 21st century. In Grid Computing: Making the Global 
Infrastructure a Reality. Wiley, 2003.
[42] G. Fox, W. Furmanski, T. Haupt, and S. Klasky. Web flow: A visual problem solving environment for 
wide-area, 1996. NPAC Proposal to the NSF New Technologies Program.
[43] G. Fox, D. Gannon, and M. Thomas. A summary of grid computing environments. Concurrency and 
Computation: Practice and Experience, 14(13-15):1035–1044, nov- dec 2002.
[44] Geoffrey Fox, Dennis Gannon, and Mary Thomas. Overview of grid computing environments. Technical 
report, Global Forum International, 2003. http://www.gridforum.org/.
[45] E. Gallopoulos, E.N. Houstis, and J.R. Rice. Computer as thinker/doer: Problem- solving environments for 
computational science. IEEE Computational Science and Engineering, 1(2):11–23, 1994.
[46] E. Gallopoulos, E.N. Houstis, and J.R. Rice. Workshop on problem-solving environments: Findings and 
recommendations. ACM Computing Surveys, 27(2):277– 279, 1995.
[47] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of Reusable Object-Oriented 
Software. Addison-Wesley, 1994. 
[48] D. Gannon, R. Bramley, G. Fox, S. Smallen, A. Rossi, R. Ananthakrishnan, F. Bertrand, K. Chiu, M. 
Farrellee, M. Govindaraju, S. Krishnan, L. Ramakrishnan, Y. Simmhan, A. Slominski, Y. Ma, C. Olariu, and N. 
Rey-Cenvaz. Programming the grid: Distributed software components, P2P, and Grid Web Services for scientific 
applications. In Proceedings of Grid 2001, 2001.
[49] Steve Graham, Simeon Simeonov, Toufic Boubez, Glen Daniels, Doug Davis, Yuichi Nakamura, and Ryo 
Neyama. Building Web Services with Java: Making Sense of XML, SOAP, WSDL, and UDDI. Sams 
Publishing, Indianapolis, IN, 2001.
[50] A.S. Grimshaw, A. Natrajan, M.A. Humphrey, M.A. Lewis, A. Nguyen-Tuong, J.F. Karpovich, M.M. 
Morgan, and A.F. Ferrari. From Legion to Avaki: The persistence of vision. In Grid Computing: Making the 
Global Infrastructure a Reality. Wiley, 2003.
[51] A. Hoheisel. Fraunhofer resource grid – grid application definition language. Technical report, Global Grid 
Forum, 2002.
 [52] E. Houstis, J.R. Rice, E. Gallopoulos, and R. Bramley, editors. Enabling Technologies for Computational 
Science: Frameworks, Middleware, and Environment. Kluwer Academic Publishers, 2000.
[53] E.N. Houstis, A.C. Catlin, N. Dhanjani, J.R. Rice, N. Ramakrishnan, and V. Verykios. MyPITHIA:a 
recommendation portal for scientific software and services. Concurrency and Computation: Practice and 
Experience, 14(13-15):1481–1505, 2002.
[54] K.A. Iskra, R.G. Belleman, G.D. vanAlbada, J. Santoso, P.M.A. Sloot, H.E. Bal, H. J.W. Spoelder, and M. 
Bubak. The Polder Computing Environment: a system for interactive distributed simulation. Concurrency and 
Computation: Practice and Experience, 14(13-15):1313–1335, 2002.
[55] C. Johnson, S. Parker, and D. Weinstein. Large-scale computational science applications using the SCIrun 
problem-solving environment. In Proceedings of Supercomputing 2000, 2000.
[56] A. E. Koniges, editor. Industrial Strength Parallel Computing. Morgan Kaufmann, 2000.
[57] S. Krishnan, R. Bramley, M. Govindaraju, R. Indurkar, A. Slomski, D. Gannon, J. Alameda, and D. Alkaire. 
The XCAT science portal. In Proceedings SuperComputing 2001, Denver, USA, November 2001.
[58] C. Lee, S. Matsuoka, D. Talia, A. Sussman, N. Karonis, G. Allen, and M.Thomas. A grid programming 
primer. In Programming Models Working Group, Global Grid Forum 1, Amsterdam, March 2001.
[59] C. Lee and D. Talia. Grid programming models: current tools, issues and directions. In Grid Computing: 
Making the Global Infrastructure a Reality. Wiley, 2003.
[60] Maozhen Li, Omer F.Rana, and David Walker. Wrapping mpi-based legacy codes as Java/CORBA 
components. Future Generation Computer Systems, 18(2):213–223, October 2001.



[61] Maozhen Li, Omer F. Rana, David Walker, Matthew Shields, and Yan Huang. Component-based problem-
solving environments for computational science. Technical report, Department of Computer Science, University 
of Cardiff, UK.
[62] Dan A. Marinescu. A grid workflow management architecture. Technical report, Global Grid Forum 
Working Document (submitted). School of Electrical and Computer Engineering, University of Central Florida, 
Orlando, USA, 2002.
[63] Dan A. Marinescu. Internet Based Workflow Management: Towards a Semantic Web. Wiley, 2002.
[64] J. Michopoulos, P. Tsompanopoulou, E. Houstis, J. Rice, C. Farhat, M. Lesoinne, and F. Lechenault. 
DDEMA: A data-driven environment for multiphysics applications. In Proceedings of ICCS 2003 International 
Conference on Computational Science 2003, Lecture Notes in Computer Science. Springer Verlag, 2003.
[65] A. Natrajan, A. Nguyen-Tuong, M.A. Humphrey, M. Herrick, B.P. Clarke, and A.S. Grimshaw. The Legion 
Grid Portal. Concurrency and Computation: Practice and Experience, 14(13-15):1365–1394, 2002.
[66] J. Novotny. The Grid Portal Development Kit. Concurrency and Computation: Practice and Experience, 
14(13-15):1129–1144, 2002.
[67] M.E. Pierce, C. Youn, and G.C. Fox. The Gateway computational Web portal. Concurrency and 
Computation: Practice and Experience, 14(13-15):1411–1426, 2002.
[68] F.A. Rabhi and S. Gorlatch, editors. Patterns and Skeletons for Parallel and Distributed Computing. 
Springer Verlag, 2003.
[69] N. Ramakrishnan, L.T. Watson, D.G. Kafura, C.J. Ribbens, and C.A. Shaffer. Programming environments 
for multidisciplinary Grid communities. Concurrency and Computation: Practice and Experience, 14(13-
15):1241–1173, 2002.
[70] O.F. Rana and D.W. Walker. Service Design Patterns for Computational Grids. In Patterns and Skeletons 
for Parallel and Distributed Computing. Springer-Verlag, 2003.
[71] Omer F. Rana, David Walker, Maozhen Li, and Matthew Shields. An XML based component model for 
generating scientific applications and performing large scale simulations in a meta-computing environment. In 
Proceedings of Generative Component Based Software Engineering, Erfert, Germany, 1999.
[72] R. Rheinheimer, J.I. Beiriger, H.P. Bivens, and S.L. Humphreys. The ASCI Computational Grid: Initial 
deployment. Concurrency and Computation: Practice and Experience, 14(13-15):1351–1363, 2002.
[73] J.R. Rice and R.F. Boisvert. From scientific software libraries to problem-solving environments. IEEE 
Computational Science and Engineering, 3(3):44–53, 1996. 
[74] A. Schreiber. The integrated simulation environment TENT. Concurrency and Computation: Practice and 
Experience, 14(13-15):1553–1568, 2002.
[75] K. Schuchardt, B. Didier, and G. Ecce. Ecce - a problem solving environment’s evolution towards Grid 
services and a Web architecture. Concurrency and Computation: Practice and Experience, 14(13-15):1221–1139, 
2002.
[76] Matthew S. Shields, Omer Rana, David W. Walker, Maozhen Li, and David Golby. A Java/CORBA-based 
visual program composition environment for PSEs. Concurrency - Practice and Experience, 12(8):687–704, 
2000.
[77] D.B. Skillicorn. Motivating computational grids. Technical report, Department of Computing and 
Information Science, Queen’s University, Ontario, Canada, November 2001.
[78] C. Szyperski, editor. Component Software: Beyond Object-oriented Programming. Addison-Wesley, 1999.
[79] M. Thomas, M. Dahan, K. Mueller, S. Mocka, C. Mills, and R. Regno. Application portals: Practice and 
experience. Concurrency and Computation: Practice and Experience, 14(13-15):1427–1433, 2002.
[80] J. Villacis, M. Govindaraju, D. Stern, A. Whitaker, F. Berg, P. Deuskar, B. Temko, D. Gannon, and R. 
Bramley. CAT: A high performance, distributed component architecture toolkit for the grid. In Proceedings of 
the 8th IEEE Symp. on High Performance Distributed Computing, 1999.
[81] G. von Laszewski, J. Gawor, S. Krishnan, and K. Jackson. Grid kits – middleware for building Grid 
environments. In Grid Computing: Making the Global Infrastructure a Reality. Wiley, 2003.
[82] G. von Laszewski, J. Gawor, P. Lane, N. Rehn, and M. Russel. Features of the Java Commodity Grid Kit. 
Concurrency and Computation: Practice and Experience, 14(13-15):1045–1055, 2002.
[83] G. von Laszewski, M. Russell, I. Foster, J. Shalf, G. Allen, G. Daues, J. Novotny, and E. Seidel. 
Community software development with the Astrophysics Simulation Collaboratory. Concurrency and 
Computation: Practice and Experience, 14(13-15):1289–1301, 2002.
[84] D. Walker, M. Li, O.F. Rana, M.S. Shields, and Y. Huang. The software architecture of a distributed 
problem-solving environment. Concurrency: Practice and Experience, 12(15):1455–1480, December 2000.
[85] David W. Walker. Emerging distributed computing technologies. Technical report, Department of 
Computer Science, Cardiff University, UK, 2001. 
http://www.cs.cf.ac.uk/User/David.W.Walker/IGDS/GridCourse.htm.


