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Abstract—Linear systems arise in large-scale scientific and 
engineering calculations. In many cases, coefficient matrices 
tend to be very large and sparse. Given a system of linear 
equations, direct solutions can be obtained using Gaussian 
elimination. The paper describes the application of the 
Gaussian elimination method in conjunction with reordering 
algorithms. Our main goal is to present an overview of issues 
arising in the symbolic factorization phase. 

I. INTRODUCTION 
Factorization of large matrices appearing in process of 

modeling electromagnetic effects in electrical circuits is the 
most resources consuming stage of numerical simulation. It 
causes high load of memory, extended computing time and 
large number of numerical instabilities or faults. Those three 
main problems can be diminished, especially in sparse 
matrices, controlling the fill-in in the process of matrix 
factorization. A proper preordering algorithm is a basic 
method to reach desired effects. 

Our goal is to improve the solution procedure of the EM 
numerical simulations in the frequency domain of radio 
frequency devices modeled by Finite Integrals Technique – 
FIT. This approach generates very sparse matrices (with 
maxim five nonzero entries per line, sparsity approximately 
0.07%), but unsymmetrical, unstructured and complex [1].  

II. THE COMPUTATIONAL METHODOLOGY 

A.  Gaussian Elimination 
Gaussian elimination algorithm proceeded on A in finite 

number of steps of decomposition results in LU 
factorization: 

 ULA ⋅=  (�) 

where U is upper-triangular and L is lower-triangular matrix.  

Figure 1.  Example of  unsymmetric, real matrix A1, size: 479x479, 
Westerberg, chemical process simulation problem. 

The significant impact for the algorithm of elimination has 
the structure of matrix A. For sparse and not reordered 
matrices, a process of Gaussian elimination can destroy the 
zero entries in A, i.e. fill-in will occur in L and U. 
Specifically, after one step of Gaussian elimination, the L 
and U parts of LU factorization can become dense; this 
results in disastrous usage of time and memory in further 
computations. For this reason, it is important to find 
permutations of the matrix that will have the effect of 
reducing fill-ins during the Gaussian elimination process. 

B. Ordering 
As the sparsity structure of the LU factors depends on the 

sparsity structure of A, controlling the number of zero entries 
that turn into nonzero can be performed with ordering 
 



 

 

 

Figure 2.  Matrix A1, preordered with  MARKMOD algorithm. 

 

Figure 3.  Matrices L and U as a result of decomposition  of preordered 
matrix A1. It can be observed, that its pattern is similar to PA1Q. Number of 

fill-ins has been reduced. The process of Gaussian elimination results 
stable. 

techniques, i.e. permuting rows with row permutation matrix 
P and columns with the column permutation matrix Q: 

 ULQAP ⋅=⋅⋅  (�) 

However, designing an ordering algorithm it is wise to 
predict which zero entries will turn into nonzero in the next 
step of elimination, which means that a symbolic 
factorization should be performed (factorization processed 
only symbolically, i.e. without numerical values). 

C. Pivoting 
The main problem of sparse Gaussian elimination is 

choosing row and column permutation matrices P and Q to 
preserve not only the sparsity of L and U, but also to 
maintain numerical stability of the system. For general 
matrices, the LU factorization is neither stable nor backward 
stable. The instability can be controlled by pivoting, 
however, in a code where numerical pivoting is necessary, 
the symbolic phase cannot be separated from the numerical 
factorization. 

III. RESULTS 
Our main problem was to develop a preordering 

algorithm combining the phase of pivoting and symbolic 
factorization and giving satisfying fill-in quantitative results. 
As numerical factorization is the most time-consuming, 
whereas symbolic factorization takes very little time and 
ordering can be relatively inexpensive too, the perfect 
solution would be finding such preordering, processed 
without numerical values, that stability of elimination would 
be maintained without the need of applying pivoting. 

For nonsymmetric ordering, due to previous research 
results [4], Markowitz scheme has been investigated and 
applied to all nonzero entries in matrix. The developed 
preordering algorithm MARKMOD performs at each stage 
of decomposition Markowitz measures, predicting the entries 
filled-in by the elimination process. From the multiple 
choices of elements with minimum Markowitz cost, after the 
phase of breaking the ties, a row and column to be permuted 
are selected taking into consideration the location of 
previously inserted diagonal entries and their corresponding 
columns and rows. 

Figure 4.  Example of  unsymmetric, real matrix A2, size: 100x100, Marco 
Morandini, small helicopter rotor model. 

 



 

 

Figure 5.  Matrix A2, preordered with  MARKMOD algorithm. 

Figure 6.  Matrices L and U as a result of decomposition  of preordered 
matrix A2. Even though, that the number of fill-ins has been profitably 

reduced, the Gaussian elimination results unstable. 

IV. CONCLUSIONS 
The researches prove very good quantitative and stability 

results comparing with other preordering methods (Table I). 
However, still, in some cases, despite an effective reduction 
of fill-ins, the problem of instability arises (Fig. 4, 5, 6). The 
basic reason for this behaviour is the difficulty of predicting 
pivots in the phase of symbolical factorization. Nevertheless 

the carried out researches are an excellent base for future 
studies of heuristic approach. 

As matrices generated in FIT modeling have a defined 
and predictive pattern, it is necessary in further researches to 
adapt the algorithm to the specific matrix. This, and studies 
of other methods for improvement of stability will be the 
next stage of our future research work. 

TABLE I.  ALGORITHMS’ PERFORMANCES WITH SOME 
UNSYMMETRIC MATRICES  

Preordering algorithm and corresponding 
nnze(L)+nnz(U) Matrix title  

size / nnz(A) COLA
MDa 

COLP
ERMb 

SYMR
CMc 

UMF 
PACKd 

MARK
MOD 

Chemical process, 
Bogle, 1982 
59x59 / 271 

534 542 668 433 402 

Chemical process, 
Grund, 1994 
87x87 / 230 

480 507 631 442 394 

Fluid dynamics, 
Meerbergen, 1994 
100x100 / 396 

786 782 784 498 496 

Pajek networks, 
Garfield, 2002 
396x396 / 994 

1 576 1 390 2 109 1 389 1 383 

Chemical process, 
Westerberg, 1983 
479x479 / 1.887 

6 422 7 083 14 579 4 246 3 245 

Web connectivity, 
Moler, 2002 
500x500 / 2.636 

14 767 3 143 3 752 3 137 3 138 

Fluid dynamics, 
Godet-Thobie, 1991 
1090x1090 / 3.546 

4 890 4 636 6 592 4 636 4 636 

Circiut simulation, 
Bomhof, 2000 
2624x2624 / 35.823 

~1M 47 304 ~6M 44 879 43 021 

a. Column Approximate Minimum Degree Permutation 

b. Column-count Permutation 

c. Sparse Reverse Cuthill-McKee Ordering 

d. Unsymmetric Multifunctional Sparse LU Factorization Package 

e. Number of nonzero elements 
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