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Comparison of Reduced-Order Interconnect
Macromodels for Time-Domain Simulation

Timo Palenius and Janne Roos

Abstract—A typical integrated-circuit model consists of
nonlinear transistor models and large linear RLC networks
describing the interconnects. During the last decade, various
model-reduction algorithms have been developed for replacing
each RLC network with an approximately equivalent, but much
smaller, model. Since these reduced-order models are described
in the frequency domain, they have to be linked to the transient
analysis of the whole nonlinear circuit, which can be done by
replacing these models with appropriate macromodels. In the
interconnect literature, the actual macromodel realization, which
has a great impact on the transient-simulation CPU time, is often
overlooked. This paper presents a comprehensive comparison of
nine reduced-order interconnect macromodels for time-domain
simulation: the macromodels are reviewed, presented in a unified
manner, and compared both theoretically and numerically. Since
we have implemented all the nine macromodels into the APLAC
circuit simulation and design tool, we are able to present a fair
and meaningful CPU–time comparison.

Index Terms—Interconnect simulation, macromodeling, model-
order reduction, transient analysis.

I. INTRODUCTION

AS OPERATION frequencies and integration densities of
digital very large scale integration (VLSI) circuits increase

while device sizes shrink, there is a growing need to correctly
model the interconnects between transistors or, e.g., those in
package wiring. A typical integrated-circuit model consists of
nonlinear transistor models and linear RLC networks describing
the interconnects. Since the size of these RLC networks can be
huge, various model-reduction algorithms [1]–[11] have been
developed for replacing them with reduced-order models. This
paper deals with the reduction of the important class of lumped
RLC interconnect models; consequently, model-reduction algo-
rithms that are tailored for, say, RC circuits only (e.g., [1]) or al-
gorithms that can handle (dispersive multiconductor) transmis-
sion lines (e.g., [2] and [3]) are not considered. Any model-re-
duction algorithm should preserve the passivity of the original
interconnect model in order to produce stable systems when
connected to the rest of the circuitry [4]. Thus, algorithms like
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asymptotic waveform evaluation (AWE) [5], Padé via Lanczos
(PVL) [6], or complex frequency hopping (CFH) [7], which do
not preserve passivity, are not considered in this paper. Finally,
the result of the reduction should fit naturally into the modified
nodal analysis (MNA), which is routinely used in circuit sim-
ulators to formulate circuit equations. Therefore, the recently
proposed algorithm efficient nodal order reduction (ENOR) [8],
which produces -parameters (instead of -parameters) is not
considered here.

In this paper, the passive reduced-order interconnect macro-
modeling algorithm (PRIMA) [4] will be used for reduction as
its algorithmic steps provide good starting points for several
macromodel realizations. Note, however, that the macromod-
eling discussion here is by no means limited to PRIMA; other
passive multiinput–multioutput (MIMO) algorithms like the one
proposed in [9], block rational Arnoldi [10], and SyMPVL [11]
could also be used.

With PRIMA(-like) algorithm(s), the result of reduction for
each RLC network is a reduced-order admittance matrix, where
each -parameter is typically given in terms of a set of dominant
poles and the corresponding residues. Once this frequency-do-
main reduced-order model has been obtained, it has to be linked
to the transient analysis of the whole nonlinear circuit since the
simulation of digital circuits is usually performed in the time
domain. The desired link can be created by replacing the re-
duced-order model with an appropriate macromodel. There are
basically two ways of generating these macromodels [12, Ch. 7],
which are as follows.

1) Synthesis: an equivalent-circuit macromodel, or a SPICE-
netlist, is synthesized using basic circuit elements. Any
time-domain circuit simulator can then be used.

2) Recursive convolution: a time-varying macromodel is
generated. For many simulators, this method requires a
modification of a simulator source code.

In the literature, several macromodels have been proposed
[3], [4], [12]–[26]. In this paper, we will discuss most of these
macromodels; the equivalent-circuit macromodels [13]–[15]
and the time-varying macromodel [16] are not discussed further
due to the following reasons. In [13] and [14], the macromodel
was realized using -parameters, while in [15] and [16], a
set of rational functions, i.e., not poles and residues, were
realized. (Naturally, if really needed, both -parameters and
rational functions can be more or less easily converted into a
form suitable for the macromodeling methods discussed in this
paper.)

In the literature, various model-reduction algorithms have
been presented, while the actual realization of the reduced-order
model, which has a great impact on the transient-simulation
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CPU time, is often overlooked. Even when the focus has
been in macromodeling, the macromodels have rarely been
compared to each other systematically. In fact, to the authors’
best knowledge, the only systematic macromodel comparisons
are given in [4], [17], and [18]; these comparisons are discussed
further in Section V-D.

In this paper, we will present a comprehensive comparison
of nine reduced-order interconnect macromodels for time-do-
main simulation. Five equivalent-circuit and four time-varying
macromodels are reviewed, presented in a unified manner, re-
lated to PRIMA, and compared both theoretically and numeri-
cally. Since we have implemented all the nine macromodels into
the APLAC circuit simulation and design tool [27], we are able
to present a fair and meaningful CPU–time comparison.

In Section II, some useful background information is
given. The five equivalent-circuit macromodels and the four
time-varying macromodels are reviewed in Sections III and IV,
respectively. In Section V, we present a thorough comparison
of the nine macromodels along with two simulation examples.
Finally, in Section VI, we present conclusions.

II. BACKGROUND

Here, we present a brief overview of PRIMA, describe the
steps needed to handle complex eigenvalues, and define the
state-variable formulation used in the derivation of some of the
macromodels.

A. PRIMA

The MNA [28] equations (with the rows corresponding to the
current variables negated [4]) for an -port can be written as

(1)

where and are susceptance and conductance matrices, re-
spectively, and is a selector matrix consisting of 1’s,

1’s, and 0’s. Vector contains the nodal voltages (and some
branch currents), and and are the port voltage and cur-
rent vectors, respectively. Here, we assume that the dimension
of the and matrices, , is a large number and we are only
interested in the behavior of the -port as seen from the port
nodes. Consequently, we seek a reduced-order model with di-
mension that approximates the behavior of the -port
sufficiently well in the frequency band of interest.

PRIMA transforms (1) into

(2)

where the reduced-order matrices are obtained from
, , , and .

Here, the matrix is a congruence-transformation
matrix obtained after (rounded to an appropriate integer)
iterations of the block Arnoldi algorithm [4].

Next, the first equation of (2) is premultiplied with . As-
suming that a basis of eigenvectors exists for the matrix ,

it can be written as , where is a diag-
onal matrix containing the eigenvalues of as its diag-
onal elements and has the corresponding eigenvectors as its
columns. After premultiplying with , (2) can be written as

(3)
or, if we assume a change of variables as

(4)

where , , and is the unity
matrix. Note that (4) has the same dimensions as (2), but the
coefficient matrices and are now diagonal.

Let us now consider how the port current can
be written in terms of poles and residues. Consider the th row
in the first equation of (4) as follows:

(5)

Laplace-transforming (5) (assuming zero initial conditions) and
solving for yields

(6)

The current of port , or the th element of , can now be
written as

(7)

where is the th pole of the admittance
and is the corresponding residue.

B. Complex Eigenvalues

Some of the eigenvalues of the real matrix may be
complex numbers, in which case, they appear in complex-con-
jugate pairs. Let us assume that of the eigenvalues are real and
the rest appear in conjugate pairs such that . Con-
sider one such pair, . The corresponding eigenvectors
and, therefore, also the corresponding rows of matrices and
in (4), are complex conjugate. Let the corresponding elements
of vector be . Inserting these into (5), and requiring
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the real and imaginary parts of the equation to hold indepen-
dently, yields (the same pair of equations is obtained twice)

(8)
Repeating the steps of (6) and (7) yields the contribution of the
particular eigenvalue pair into the port current in terms of
the poles and residues that are, again, complex-conjugate pairs.

C. State-Variable Formulation

Consider one (generic) term in the summation of (7)

(9)

where is a state variable. The state-space model for this
pole/residue pair can be written in the time domain (assuming
zero initial conditions) as

(10)

Similarly, a state-space model can be obtained for a pair of
complex poles/residues. Let the complex conjugate poles and
the corresponding residues be and , respectively,
and the complex conjugate state variables . As before,
inserting these into (10) and requiring the real and imaginary
parts of the equation to hold independently yields

(11)

Possibly the simplest state-space coordinate system is obtained
by introducing the following change of variables: and

. The final state-space model for a pair of complex
poles can then be written as

(12)

The above change of the coordinate system can also be ob-
tained by applying an appropriate similarity transformation to
the state-space model [13], [19].

In nonlinear circuit simulation, the transient analysis is al-
ways preceded by a dc analysis. To ensure that the port voltages
at time coincide with the dc voltages, proper initial values
for the state variables must be used. These are obtained by set-
ting the time derivatives to zero in (10) and (12) as follows:

(13)

where is the dc port voltage.

III. EQUIVALENT-CIRCUIT REALIZATIONS

The macromodels presented here are realized with equivalent
circuits consisting only of linear, constant value (i.e., time-in-
dependent) voltage-controlled current sources (static VCCSs)
or voltage-controlled charge sources (dynamic VCCSs), which
contain linear resistors and capacitors, respectively, as special
cases. Therefore, these macromodels can be realized as a SPICE
netlist without touching the simulator’s internal source code.
They are easy to implement, and the circuit simulator will au-
tomatically handle the calculation of the local truncation error
(LTE) and the new transient analysis time step. The drawback
is that these macromodels will necessarily generate additional
nodes into the circuit. This tends to slow down the transient (as
well as dc, ac, harmonic balance, etc.) analysis, as the size of
the matrix equation that has to be solved grows.

For clarity, we will present the entire equivalent circuits for
the methods presented in Sections III-A and B. For the rest of
the methods, we will adopt a convention that only one VCCS
at the th port and the equivalent-circuit realizations for one
real eigenvalue (pole, state variable) and one complex-conju-
gate eigenvalue (pole, state variable) pair will be shown in the
figures. The generic summation indices and in the figures
refer to the summations over the source and controlling ports,
respectively (as in ), and refers to the summation over the
eigenvalues (poles, state variables) in the reduced-order model.

A. Direct Stamping I

In [20], Odabasioglu et al. suggested that (2) can be directly
stamped into the MNA matrix of the whole circuit as

Stamps for

(14)
where denotes the MNA variables of the nonlinear parts
of the circuit and and are the port voltages and currents,
respectively. Vectors and denote the sources connected to
the nonlinear and port nodes.

A matrix stamp can be realized using any circuit simulator by
finding an equivalent circuit that produces the same stamp. It is
easy to see, using elementary circuit analysis, that the equivalent
circuit presented in Fig. 1 is governed by (14). Note that the

additional MNA variables, the elements of and , correspond
to the unknown nodal voltages of the additional nodes
introduced by this equivalent circuit.

In [4], a slightly modified version of (14) was given: the last
row of (14) was premultiplied with . This may seem, at
first glance, like a trivial modification, but it might have, de-
pending on the implementation, some impact on the simulation
speed. Namely, the elements of matrices , , , and are all,
in general, nonzero, whereas is a diagonal matrix and the re-
duced-order matrix has a special structure: as a built-in
property of PRIMA, is a block Hessenberg matrix [4],
implying that a large part of its elements are typically zero. If
the equivalent circuit is realized such that only nonzero VCCSs
are created, some speed-up can be expected. The number of ad-
ditional nodes is still .
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Fig. 1. Direct stamping I.

Fig. 2. Direct stamping II.

B. Direct Stamping II

As can be seen from Fig. 1, the port currents in (14) are
not needed in the realization. Eliminating from (14)
results in [21]

Stamps for

(15)

The corresponding equivalent circuit is shown in Fig. 2. Now,
the number of additional nodes is only . Naturally, the last row
of (15) could be premultiplied with , as before.

C. Matsumoto’s Method

In [18], Matsumoto et al. proposed an equivalent circuit,
which is a realization of (5) and (8). The equivalent circuit,
which produces additional nodes, is shown in Fig. 3. The
nodal equations for, e.g., the circuit in Fig. 3(b), can be written
as

(16)

which yields (5) when is replaced with .
The equivalent circuit shown in Fig. 3(c) contains two dy-

namic VCCSs taking their controls and from across
each other. In [18], a slightly different equivalent circuit was
used, where, instead of two dynamic VCCSs, there were three
capacitors connected in a configuration. These two realiza-
tions are completely equivalent: both produce exactly the same
matrix stamp, and they can be obtained from one another with

Fig. 3. Matsumoto’s method. (a) A port VCCS. (b) Realization of a real
eigenvalue. (c) Realization of a complex eigenvalue pair.

elementary circuit transformations. We have chosen the one in
Fig. 3 because it bears closer resemblance to other methods con-
sidered in this paper, and because it creates one less VCCS for
each complex-pole pair.

D. Transfer-Function Realization

The driving-point or transfer admittance given by (7) can be
realized with an equivalent circuit that exploits dynamic VCCSs
to synthesize the terms in the denominator [21]. Complex
poles and their corresponding residues can be com-
bined with their conjugate pairs and the expression for the port
current can be expanded as

(17)

The equivalent circuit, which creates additional
nodes, is shown in Fig. 4.

E. Differential-Equation Macromodel

The state-space model of (10) and (12) can be realized with
a relatively simple equivalent circuit [12], [22], [23], as shown
in Fig. 5. The number of additional nodes is .

IV. TIME-VARYING MACROMODELS

The macromodels presented here consist of linear
time-varying VCCSs and independent current sources at
the -ports, as shown in Fig. 6. The values of the sources at
each time point are calculated using internal state variables.
Note that implementation of these methods usually requires
additions to the simulator’s source code. The advantage of
these methods is that no additional nodes are created, but
the values of the time-dependent (trans)conductance and the
equivalent port-current source have to be updated at each time
point. The conductance can be identified as the coefficient
of the (unknown) present-time voltage in the port current. All
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Fig. 4. Transfer-function realization. (a) A port VCCS. (b) Realization of a
real pole. (c) Realization of a complex pole pair.

Fig. 5. Differential-equation macromodel. (a) A port VCCS. (b) Realization
of a real state variable. (c) Realization of a complex state-variable pair.

Fig. 6. Port VCCS and an independent current source.

the other terms in the port current form the equivalent port
current-source .

Fig. 7. Transient analysis of a reduced-order time-varying macromodel.

Here, we consider discrete time-domain samples of the port
voltages and currents and the state variables. For ease of no-
tation, we denote the discrete samples at different time points
with superscripts. For example, the present and previous time
port voltages and are denoted by and ,
respectively. We also define the time steps
and . Note that the state-updating equa-
tions should simplify to the initial values given by (13) when

to avoid any discontinuities at .
The steps needed in the transient analysis of a nonlinear

circuit containing a reduced-order time-varying macromodel
are presented in Fig. 7. Note that Newton–Raphson iteration is
needed at each time point when the overall circuit is nonlinear.

A. Kubota’s Method

In [24], Kubota et al. approximated the time derivatives in (2)
with the backward Euler (BE) rule

(18)

and obtained the following state-updating equations:

(19)

No additional nodes are created and the number of internal vari-
ables is only , but one matrix inversion and several matrix mul-
tiplications are required to obtain the conductance and equiva-
lent current.

Naturally, this method can be extended to any numerical in-
tegration scheme. The general form of a numerical integration
algorithm for solving initial-value problems can be written as
[29]

(20)

The three methods generally used in circuit simulation, i.e., BE,
trapezoidal rule (TR), and Gear–Shichman (GS) [30] methods,
can be described with only four nonzero coefficients , , ,
and . The coefficients for the three methods are collected in
Table I.
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TABLE I
COEFFICIENTS FOR THE INTEGRATION METHODS

The present-time derivative can be solved from (20)

(21)

Inserting this into (2) and using

(22)

for the previous-time derivative yields an updating equation for
for each integration method. Note that BE integration must

be used at to make the solution consistent with the dc
solution.

B. Time-Domain Differential-Equation Macromodel

The numerical integration formulas (20) can also be applied
to the state-space model presented in Section II-C, thus avoiding
the matrix inversion and multiplications [25]. Applying (21) to
the left-hand side of (10) and solving for the present-time state
variable yields an updating equation for in the case of a
real pole

(23)

where and . Similarly, the case of
complex poles is handled by applying (21) to (12); after some
algebraic manipulation, the updating equations can be written
as

(24)
where

Inserting the coefficients , , , and from Table I yields
the final state-updating equations for each integration method.
As before, BE integration must be used at .

C. Bracken’s Method

In [26], Bracken et al. proposed a method that assumes the
port voltages to be piecewise linear (PWL) functions of time.
Hence, the port voltages can be composed of delayed ramps with
different slopes at each time point. The latest change of slope
is given as

(25)

Consider one (generic) real pole/residue pair in (7). The time-
domain port current corresponding to an input ramp

is obtained with the inverse Laplace transform

(26)

where is the heaviside step function. Defining auxiliary vari-
ables , , and for the coefficients of the constant term, the
linear time-dependent term, and the term, respec-
tively, the port current at time can be calculated as

(27)

where the coefficients of constitute the conductance and
the rest of the terms form the equivalent current source. At
each time point, after the new port voltages are obtained using
Newton–Raphson iteration, the new change of slope is calcu-
lated, and the auxiliary variables are updated as follows:

(28)

(29)

(30)

The case of complex-conjugate poles is handled similarly, but
this time, four auxiliary variables are needed for the constant,
linear, , and terms.

D. Frequency to Time Domain (FTD)

In [19], Liu et al. proposed a method, i.e., FTD, that uses the
exact solution of differential equation (10)

(31)

As before, the port voltages are assumed to change linearly be-
tween the time points and

(32)
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Now, the integral can be evaluated in a closed form and the fol-
lowing state-updating equation is obtained in the case of a real
pole

(33)

The port current is obtained by multiplying by , as in
(10). The derivation of the state-updating equations in the case
of a pair of complex poles—fairly complicated expressions in-
volving exponential and trigonometric functions—can be found
in [19].

V. COMPARISON OF THE MACROMODELS

Here, we consider the relations between the nine macro-
models. The macromodels are then compared to each other
using both theoretical considerations and transient-simulation
examples. To enable a fair CPU–time comparison, all nine
macromodels were implemented as built-in C-coded APLAC
models. The transient analysis of the reduced-order models is
also compared to that of the original unreduced circuit.

A. Relations Between the Macromodels

The PRIMA steps, and the various post-processing steps, are
shown in Fig. 8. The macromodels corresponding to each step
are illustrated in this figure. The time-varying macromodels are
shown in grey.

Two of the time-varying macromodels have direct links
to two equivalent-circuit realizations. Namely, replacing the
charge sources in direct stamping I (III-A) with their companion
models [29] and solving for the port currents, yields Kubota’s
method (IV-A). Similarly, time-domain differential-equation
macromodel (IV-B) can be obtained from differential-equation
macromodel (III-E). Also note that Bracken’s method (IV-C)
and FTD (IV-D) produce exactly the same port current, but the
internal states are different.

B. Theoretical Considerations

For a fixed time step, the port currents for all the macro-
models, except IV-C and IV-D are equivalent, in the limits of
numerical accuracy. The five equivalent-circuit realizations
create different numbers of additional nodes and internal
VCCSs. The four time-varying macromodels differ in terms
of the number of internal states and the LTE calculation. The
number of nodes, VCCSs, and internal states are collected in
Table II for the nine macromodels.

It must be remembered that matrix inversion and several ma-
trix multiplications are required for IV-A to update the states.
For IV-A and IV-B, two or three (depending on the integra-
tion method) past values of the states must be stored in memory
for the LTE calculation. Also, the previous-time port voltages
(for IV-C, also the ones before those), must be stored for the
time-varying macromodels.

The well-known expressions for the LTE (see, e.g., [29] and
[30]) for the three integration methods considered in this paper

Fig. 8. Illustration of the PRIMA steps, the various post-processing steps, and
the corresponding macromodels. The time-varying macromodels are shown in
grey.

have been gathered in Table III. In this table, denotes the
th time derivative of , evaluated somewhere in the open

interval . The th derivative can be approximated
with the finite divided difference [31]

(34)

which implies that at least past values of must be kept stored
in memory at each time point.

For the equivalent-circuit realizations, the expressions of
Table III are applied internally by the circuit simulator to the
charges of each dynamic VCCS. The largest LTE of the whole
nonlinear circuit is then found and it can be used as a criterion
for accepting/rejecting the current time step and as a parameter
in calculating the new one [29].

For time-varying macromodels, the LTE can be calculated
using the same expressions of Table III. It is not, however, ob-
vious, which quantities these formulas should be applied to. One
natural choice is to find a quantity that produces the same LTE
as some of the equivalent-circuit realizations. As noted before,
IV-A can be derived from III-A and IV-B from III-E so the
expressions for charge can be determined easily by inspecting
Figs. 1 and 5. Note that, for both equivalent circuits, the values
of the elements connected to the additional nodes can be multi-
plied with a constant, without any change in the port quantities.
Therefore, we can scale the charge, and thereby, the LTE, to
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TABLE II
COMPARISON BETWEEN THE NINE METHODS

TABLE III
LTE FOR THE INTEGRATION METHODS

any amplitude. This does not, however, make the error calcula-
tion ambiguous since relative error is almost always used (the
exception would be extremely small charges, where the relative
error becomes unreasonably large).

IV-C and IV-D do not apply numerical integration, which is
the source of error in the other macromodels. Instead, the error
in IV-C and IV-D arises from the PWL assumption. With non-
linear drivers and loads, the port currents and, therefore, also the
port voltages, are never PWL. In fact, it is customary when mod-
eling nonlinear devices to force the derivatives of the terminal
currents to be continuous in order to help the convergence of
the Newton–Raphson iteration. Thus, IV-C and IV-D produce
an error, which can be assumed small for a sufficiently small
time step. The problem lies in estimating what is a “sufficiently
small” time step.

C. Simulation Examples

The simulations were done with the APLAC circuit sim-
ulator on an HP9000/D270 workstation. All the CPU times
are averages of three successive runs. The transient simulation
times presented include everything, except the PRIMA reduc-
tion: parsing the netlist, reading the poles and residues from a
file (produced by PRIMA), “building” the equivalent circuits,
forming the MNA equations, the dc analysis for solving the
initial state, and the actual transient analysis. TR integration
was used in all simulations, except at . BE was then used
for two time points.

1) Three-Port: A nonlinear circuit containing a linear inter-
connect block [3] and three inverters is shown in Fig. 9. The
seven transmission lines were replaced with 50 RLC sections
each, and the linear block was treated as a three-port and reduced
with PRIMA. The CPU time of the reduction using six different
orders ( ) varied between 9.05–11.78 s. The
dimension of the original and matrices was with
2191 and 718 nonzero elements, respectively. The excitation
was a voltage pulse with 1-ns rise and fall times, as shown in
Fig. 10. The voltages for the unreduced circuit and IV-B

macromodel with are also shown in this figure (the
curves corresponding to the other reduced-order macromodels
have been omitted since the curves are indistinguishable). The
simulation time step was fixed to 20 ps.

The simulation CPU times for each macromodel as a func-
tion of the order of reduction are presented in Fig. 11. The
CPU times are normalized to the CPU time of the transient sim-
ulation of the unreduced circuit (52.75 s). The curves are labeled
according to the section in which the particular macromodel was
introduced.

2) Ten-Port: A circuit containing five coupled transmission
lines with capacitance, inductance, and resistance matrices [32]

pF
cm

nH
cm

cm
and ten inverters is shown in Fig. 12. Each line was again re-
placed with 50 RLC sections, and the capacitive and inductive
coupling between the lines was taken into account with 51 mu-
tual capacitors and 50 inductive mutual couplings for each pair
of lines. The system of coupled lines was treated as a ten-port
and reduced with PRIMA using . The CPU
time for the reduction varied between 5.20–6.56 s. The dimen-
sion of the original and matrices was with 1535
and 2525 nonzero elements, respectively. The excitation was
the same pulse as in the previous example and time step was
again fixed to 20 ps. The voltages at the end of the victim
line for the unreduced circuit and the IV-B macromodel with

are shown in Fig. 13.
The simulation CPU times for each macromodel are pre-

sented in Fig. 14. The CPU times are normalized to the CPU
time of the simulation of the unreduced circuit (134.93 s).

D. Analysis of the Results

Based on Table II and on the simulation CPU times presented
in Section V-C, the following conclusions can be drawn.

1) III-A and III-B create a huge number of components,
when is large.
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Fig. 9. Nonlinear circuit with a large linear interconnect block.

Fig. 10. Input voltage (– – –), and APLAC (—) and reduced-order model
(—�—) output voltages.

Fig. 11. Comparison of CPU times for the three-port.

2) III-C is fast since the number of components and nodes
are both reasonable.

Fig. 12. Circuit with ten inverters and five coupled transmission lines.

Fig. 13. APLAC (—) and reduced-order model (—�—) output voltages.

3) For III-D, the number of nodes and VCCSs created is
enormous, especially when there are complex poles.

4) III-E creates a lot of additional nodes when both and
are large.

5) IV-A is slow because of the internal matrix operations.
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Fig. 14. Comparison of CPU times for the ten-port.

6) IV-B is fast because the state-updating equations are rel-
atively simple.

7) The complicated state-updating equations of IV-C and
IV-D make them slow when and are large.

The CPU time for direct-stamping methods, III-A and III-B,
follow a square-type law, while the CPU time for IV-B–D grows
linearly as a function of . In [4], similar results were presented
for a four-port, except that the advantage of using a time-varying
macromodel seemed much larger than in our simulations. The
methods compared in [4] were most probably similar to III-A
and IV-C.

Diagonalizing the matrices makes III-C superior to the di-
rect-stamping methods in terms of CPU time, which was also
concluded in [18] (obviously, the authors of [4] were also aware
of this). Although III-E has a simpler structure and the poles
and residues have at least some physical meaning (they can be,
e.g., stored in a file after the model reduction for reduced-order
modeling library purposes), the savings in CPU time make III-C
by far the best of the equivalent-circuit macromodels considered
here.

IV-D is much faster and much simpler to implement than
IV-C, which was also concluded in [17]. The state-updating
equations, however, involve exponential and trigonometric
functions, which makes IV-D slower than IV-B. Due to the
speed and the easily obtained LTE estimate, we conclude that
IV-B is the best time-domain macromodel considered in this
paper.

VI. CONCLUSION

A comparison between nine different time-domain macro-
models for the transient analysis of reduced-order circuits has
been given. The methods have been presented in a unified
manner, and they have been compared in terms of the internal
nodes and components generated, as well as transient-anal-
ysis CPU time. The best equivalent-circuit and time-varying
macromodels were the Matsumoto’s method and time-domain
differential-equation macromodel, respectively.
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